TD01 - Aux grands mots les grands moyens

Exercice 1. Échauffement

- **1.** Trouver un automate fini reconnaissant les entiers écrits en base 2 qui sont congrus à 1 modulo 3.
- **2.** Donner un automate fini qui reconnaisse l'ensemble des mots sur $\{a,b\}$ dont la $i^{i\hat{e}me}$ lettre en partant de la fin est un a.

Exercice 2. Rationnel?

- Narmi les langages suivants lesquels sont rationnels? Justifiez vos réponses :
 - 1. $\{a^{2n}, n \geq 0\}$.
 - 2. $\{a^m b^n a^{m+n}, m \ge 0 \text{ et } n \ge 0\}.$
 - 3. $\{a^p, p \text{ premier}\}.$
 - 4. L'ensemble des mots qui n'ont pas trois a consécutifs.
 - 5. L'ensemble des mots qui ont un nombre égal de a et de b.
 - 6. L'ensemble des mots qui sont des palindromes sur $\Sigma = \{a, b\}$.
 - 7. $\{u\overline{u}v \mid u,v \in \{a,b\}^+\}$ où \overline{u} est le miroir de u, $\overline{abb} = bba$.
 - 8. $\{uv\overline{u} \mid u, v \in \{a, b\}^+\}.$
 - 9. $\{a^i b^j, \operatorname{pgcd}(i, j) = 1\}.$
 - 10. $\{a^i b^j, i \geq j\}$.

Exercice 3.

La puissance du commutateur

Montrer que si deux mots u et v commutent (uv = vu) ils sont puissance d'un même mot (il existe $w \in \Sigma^*$ et $k, k' \in \mathbb{N}$ tels que $u = w^k$ et $v = w^{k'}$).

Exercice 4.

Elu par cette crapule, Esope reste et se repose.

On appelle image miroir d'un mot u sur un alphabet Σ (ou simplement miroir de u) le mot \bar{u} ainsi défini :

- $\sin u = \epsilon \text{ alors } \overline{u} = \epsilon,$
- $\operatorname{si} u = a_1 a_2 \dots n_n \operatorname{alors} \overline{u} = a_n a_{n-1} \dots a_1.$

Soit L l'ensemble des mots u sur Σ tels que $u=\overline{u}$ (appelés palindromes). On suppose que Σ contient au moins deux lettres (parce que sinon c'est pas très drôle).

- 1. Soient $u, u_1, u_2 \dots, u_n$ des mots sur Σ tels que u soit distinct de tous les u_i . Démontrer qu'il existe un mot v sur Σ tel que $uv \in L$ et $u_iv \notin L$ pour tout i. (On pourra considérer $v = a^m b a^m \overline{u}$ où a et b sont des lettres de Σ et m est un entier assez grand)
- **2.** Existe-t-il toujours un tel mot v si la famille (u_i) est infinie?

On appelle bord d'un mot u sur un alphabet Σ tout mot v non vide qui est à la fois préfixe propre et suffixe propre de u.

No Prouver que si Σ est un alphabet contenant au moins deux lettres, pour tout mot u non vide sur Σ , il existe un mot v sur Σ tel que uv n'a pas de bord.