TD11 – Justice League of Réécriture : Hig-Man, New-Man et les autres

Exercice 1.

Hig-Man, le super-héros qui a trop bu

Soit Σ un alphabet fini. On définit sur Σ^* la relation d'ordre $x \leq y$ par « x est un sous-mot de y ». On se propose de montrer le résultat suivant.

Lemme de Higman – Soit (x_i) une suite infinie de Σ^* . Alors il existe i < j tels que $x_i \le x_j$.

Une suite est dite *bonne* si elle vérifie la propriété du lemme, *mauvaise* sinon. Pour la preuve, on suppose qu'il existe une suite mauvaise. On construit une suite (x_i) de la façon suivante :

- $-x_0$ est un élément minimal qui commence une mauvaise suite;
- $-x_i$ est un élément minimal à la position i d'une mauvaise suite qui commence par x_0, \ldots, x_{i-1} .
 - 1. Montrer qu'on peut extraire une sous-suite $(x_{\phi(i)})$ de (x_i) dont tous les éléments commencent par la même lettre $a \in \Sigma$. On note $x'_{\phi(i)}$ le mot défini par $x_{\phi(i)} = ax'_{\phi(i)}$.
 - 2. Conclure en raisonnant sur la suite

$$x_0, x_1, \dots, x_{\phi(0)-1}, x'_{\phi(0)}, x'_{\phi(1)}, x'_{\phi(2)}, \dots$$

Exercice 2.

New-Man, le super-héros nouveau est arrivé

1. Quelle hypothèse est nécessaire sur la relation d'ordre < pour que le schéma d'induction

$$[\forall x (\forall y, y < x \Rightarrow P(y)) \Rightarrow P(x)] \Rightarrow \forall x, P(x)$$

soit valide?

- **2.** En utilisant le schéma d'induction de la question précédente montrer qu'une relation nœthérienne localement confluente est confluente (lemme de Newman).
- **3.** Montrer qu'il est nécessaire de supposer que la relation est nœthérienne pour obtenir la confluence.

Soit A un ensemble muni d'un ordre nœthérien < contenant une relation $\stackrel{R}{\longrightarrow}$. Soient u et v deux termes. Soit une suite $(w_i)_{i\in \llbracket 0,n\rrbracket}$. On dit que $(w_i)_{i\in \llbracket 0,n\rrbracket}$ est une preuve par réécriture de $u \stackrel{R}{\longleftrightarrow}^* v$ si elle vérifie les propriétés suivantes :

i.
$$u = w_0$$
 et $v = w_n$

ii.
$$\forall i \in [0, n-1], \quad w_i \xleftarrow{R} w_{i+1} \quad \text{ou} \quad w_i \xrightarrow{R} w_{i+1}$$

iii.
$$\exists i \in [0, n], \quad w_0 \xrightarrow{R} w_1 \xrightarrow{R} \dots \xrightarrow{R} w_{i-1} \xrightarrow{R} w_i \xleftarrow{R} w_{i+1} \xleftarrow{R} \dots \xleftarrow{R} w_{n-1} \xleftarrow{R} w_n$$

Si elle ne vérifie que les propriétés i. et ii. on dit simplement que c'est une preuve de $u \stackrel{R}{\longleftrightarrow} v$. On dit que $\stackrel{R}{\longleftrightarrow}$ est W-confluente si pour tous $a,b,c\in A$ avec $b\stackrel{R}{\longleftrightarrow} a\stackrel{R}{\longleftrightarrow} c$ il existe une preuve $(d_i)_{i\in \llbracket 0,n\rrbracket}$ de $b\stackrel{R}{\longleftrightarrow} c$ telle que $\forall i\in \llbracket 0,n\rrbracket,a>d_i$.

4. Montrer que si $\stackrel{R}{\longrightarrow}$ est localement confluente elle est W-confluente.

- 5. Montrer que si $\stackrel{R}{\longrightarrow}$ est W-confluente alors pour toute preuve π de $b \stackrel{R}{\longleftrightarrow} c$ qui n'est pas une preuve par réécriture il existe une preuve π' de $b \stackrel{R}{\longleftrightarrow} c$ telle que $\pi \gg \pi'$ (on définira \gg à partir de > comme un ordre nœthérien).
- **6.** Rappeler la propriété de Church-Rosser pour $\stackrel{R}{\longrightarrow}$.
- 7. Montrer que si $\stackrel{R}{\longrightarrow}$ est W-confluente alors elle satisfait la propriété de Church-Rosser.

Exercice 3.

Le jeu de Nim (ou Marienbad pour les cinéphiles)

Le jeu de Nim (dans sa version étendue en deux dimensions) est un jeu à deux joueurs qui se joue sur la grille \mathbb{N}^2 (donc un quart de plan discret).

Au départ chaque case contient un jeton. À tour de rôle les joueurs choisissent un jeton présent sur la grille et enlèvent tous les jetons qui se trouvent au-dessus et à droite de ce point (donc si ils jouent en (x,y) on enlève de la configuration tous les jetons (x',y') tels que $x' \ge x$ et $y' \ge y$). Le joueur qui prend le dernier jeton (en (0,0)) perd.

- Montrer que le jeu de Nim termine.
- 2. Donner une stratégie gagnante pour le joueur qui commence.

Exercice 4.

Ça peut pas être bien dûr...

 \bigcirc Le système de réécriture suivant sur l'alphabet $\{a,b,c\}$ termine-t-il?

$$\begin{cases}
aa \rightarrow bc \\
bb \rightarrow ac \\
cc \rightarrow ab
\end{cases}$$