On the Complexity of Limit Sets of Cellular
Automata Associated with Probability Measures

Laurent Boyer*!, Victor Poupet**!, and Guillaume Theyssier* * *2

U LIP (UMR 5668 — CNRS, ENS Lyon, UCB Lyon, INRIA), ENS Lyon, 46 allée
d'Ttalie, 69364 LYON cedex 07 FRANCE

2 LAMA (UMR 5127 — CNRS, Université de Savoie), Université de Savoie, Campus
Scientifique, 73376 Le Bourget-du-lac cedex FRANCE

Abstract. We study the notion of limit sets of cellular automata associ-
ated with probability measures (p-limit sets). This notion was introduced
by P. Kurka and A. Maass in [1]. It is a refinement of the classical notion
of w-limit sets dealing with the typical long term behavior of cellular au-
tomata. It focuses on the words whose probability of appearance does not
tend to 0 as time tends to infinity (the persistent words). In this paper,
we give a characterization of the persistent language for non sensitive
cellular automata associated with Bernoulli measures. We also study the
computational complexity of these languages. We show that the persis-
tent language can be non-recursive. But our main result is that the set
of quasi-nilpotent cellular automata (those with a single configuration
in their p-limit set) is neither recursively enumerable nor co-recursively
enumerable.

1 Introduction

Cellular automata (CA for short) are discrete dynamical systems given by a very
simple syntactical definition. They consist of a large collection of identical cells
which evolve according to uniform local interactions. Despite the simplicity of
the model, they are capable of producing a wide range of different behaviors.
One of the main challenges in the field is to give pertinent classifications of these
dynamical systems.

There has been a huge amount of attempts in the literature (see [2-4]).
Among them, the notion of w-limit set has received a great interest since the
results obtained by K. Culik et al. in [5]. This notion (which comes from classical
dynamical systems theory) is an attempt to catch the long term behavior of
cellular automata. More precisely, the w-limit set is the set of configurations that
may appear in the evolution after an arbitrarily long time. From a topological
point of view, it is also the largest attractor. As shown by J. Kari, w-limit sets
can hold a great complexity since any non-trivial property concerning them is

* laurent.boyer@ens-lyon.fr
** yictor.poupet@ens-lyon.fr

*** guillaume.theyssier@univ-savoie.fr

undecidable [6]. Among such properties, the nilpotency is the simplest one: a CA
is nilpotent if its w-limit set is reduced to a single configuration. This property is
extremely strong since it implies that all initial configurations lead to the same
uniform configuration.

The major drawback of w-limit sets is that they give the same importance
to all configurations. Thus, a negligible set of configurations can influence the
w-limit set of a CA and hide properties of its “typical” behavior.

Recently, P.Kirka and A. Maass introduced in [1] a notion of limit set asso-
ciated with a probability measure (u-limit set). Intuitively, this notion catches
the “typical” long term behavior of CA. More precisely, it is defined from the
patterns whose probability of appearance doesn’t go to 0 as time goes to infinity.
So, as opposed to classical limit sets, it does not deal with what may appear
in the long term behavior but focuses on what does typically appear. This dif-
ference makes the p-limit set more suitable to study some dynamics (see [1]).
Moreover, it is a better tool to give theoretical justifications to many phenomena
observed experimentally (since experimentations are not exhaustive, they must
restrain to “typical” orbits).

In this paper, we mainly study this set from a computational complexity
point of view. We first give a new characterization of p-limit sets associated
with Bernoulli measures for any non sensitive CA. Our characterization shows
that the p-limit set does not depend on the measure.

Then we focus on the quasi-nilpotency property: a CA is u-quasi-nilpotent
if its p-limit set is reduced to a single configuration. One can think that the
undecidability behind limit sets disappears as soon as we no longer consider all
configuration but only “typical” ones. We show that this is not the case, the
Turing degree of the quasi-nilpotency problem is even higher than that of the
nilpotency problem: the set of quasi-nilpotent CA is neither recursively enumer-
able nor co-recursively enumerable. The construction used to obtain this result
also allows us to show that some CA have a non recursive p-limit language.

2 Definitions

Formally, a one-dimensional CA A is a triple (Q.,7,0.4), where Q 4 is a finite
set of states called the alphabet, r is the radius and d 4 : Qi(“ — Q4 is the local
rule. A configuration ¢ describes the state of all cells at a given time: this is a
mapping from Z to Q4. The set of all possible configurations is denoted Qﬁ.
For c € Qa, we will often denote by ¢, the value of c at z € Z.

The local description of the CA induces a global evolution. At every step of
the computation, the configuration changes according to the global transition
rule G4 : Q% — Q% induced by the locale rule as follows:

G_A(C)i = 6A(Ci—r~-~ci---ci+r)~

In the following, when considering a CA A, we implicitly refer to the triple
(Qa,7,04), where the same symbol A denotes both the local and the global

mapping.

We denote by Q% = UU,,cy @4 the set of all finite words over Q4. The length
of u = ujug...u, is |u| = n, and, Ya € Q 4, |ul, is the number of occurences of a
in u. V0 < < j < |ul, we also define uj; jj = u;uiq1...u; and cf; 5 for ¢ € Q4 in
a similar way. A word u is a factor of a word v if there exist ¢ and j such that
u = 'U[i,j]~

For every ¢ € Q%, the language of ¢, denoted by L(c), is defined by

L(C) = {’LL S Qj\ i eZ,u= C[i,i+\u|71]}~

The language of a subset of Qﬁ is the union of the languages of its elements.
The limit set of a CA A is given by 24 = (,cn A™(Q%). Intuitively, a
configuration is in the limit set if and only if it may appear after an arbitrarily
long evolution. A CA is said to be nilpotent if its limit set is reduced to a single
configuration.
For every u € Q4 and i € Z we define the cylinder [u]; as the set of configu-
rations containing the word u in position :

[w)i = {c € Q% : Cliigu—1) = u}-

Let A be any CA and p any Borel probability measure on Q%4 (a mea-
sure on the Borel sets, i.e. the smallet o-algebra containing open sets). For any
n > 0, A" denotes the probability measure such that for any Borel set U C Qﬁ
we have A"u(U) = p(A™"(U)). If Q4 = {a1,...,a,} is the working alphabet,
a Bernoulli measure p over Qa is given by a probability vector (pi,...,pn)
(0<p; <1 and > p; =1) such that, for any word v € Q% and any i € Z,
u([uli) = [aeq. plle A Bernouilli measure is complete (or with full support)
if p; # 0 for all 7.

Definition 1 (Persistent set). Let A be any CA and i be a Bernoulli measure
on Qa. A word u € Q% s a vanishing word for A and p if its probability to ap-
pear (in a certain position) after n iterations tends to 0 asn grows to infinity. We
define the set Ly, (A) of persistent words for A and pi as the complement of the
set of vanishing words for A and p: u & Ly, (A) <= lim,_. A"u([u]o) = 0.
Then the p-persistent set or p-limit set of A is the subshift T,,(A) defined by
Ly, (A), precisely T,,(A) = {c € Q% : L(c) C Ly, (A)}.

When considering limit sets, the most studied property is certainly the nilpo-
tency. By analogy, we may define the notion of u-quasi-nilpotency associated
with the p-limit-set.

Definition 2 (Quasi-nilpotency). Let A be a CA and p be any Bernoulli
measure over Q%. A is said to be p-quasi-nilpotent if Y,(A) is reduced to a
single configuration.

One can verify that a CA A is u-quasi-nilpotent if and only if there is some
state ¢ € Q4 such that Ly ,(A) = ¢*.

Definition 3 (Walls). Let A be any CA. For any u € Q%, we denote by [u]miq
the following set of configurations of Q,Zat :

[u] _Jul if |u| is even,
(U] mia =) '
[u] e if |ul is odd.

A wall for A is a sequence W = (wn)n>0 of non empty words of Q% such that:

1. Ve € [wolmia, Vn > 1: A™(c) € [wn]mid;
2. the sequence (\wn|)n>0 is mon-increasing.

Notice that a wall W = (wn)n>0
[wo]mia contains spatially periodic configurations. The word wy is said to be
the foot of W. A word is a foot of wall for A if it is the foot of some wall for A.
Any word in the period of the sequence W will be called a brick of W: formally,
w is a brick of W if there are p, ng such that, for all n € N, wp, 45, = w. A word
w € Q% is a brick of wall for A if it is a brick of some wall of A.

The following well-known property relates the existence of bricks of wall to
the property of sensitivity to initial conditions (see [3] for a proof).

is necessarily ultimately periodic since

Proposition 1. A CA A of radius r is sensitive to initial conditions if and only
if it has mo brick of wall of size r.

The key property behind that proposition is expressed by the following easy-
to-prove lemma.

Lemma 1. Let A be any CA of radius r. If w is the foot of a wall of A having
some brick of size at least v, then for any word u € Q% there exists a wall of A
whose foot is wuw and which has bricks of size at least |u).

3 Properties of Persistent Sets

It is well-known that the limit set of any CA A is either reduced to a single
configuration or infinite. This fact does not hold with p-limit sets as shown by
the following example. The same example shows a CA whose persistent set does
not contain any uniform configuration (the limit set always does).

Ezxample 1. Let A be the 184 CA in Wolfram’s notation. That is, a two states
(Q4 ={0,1}) one dimensionnal CA of radius 1. Its local rule is given by: Va €
{0,1}, A(1,0,2) = A(x,1,1) = 1 and A(0,0,2) = A(x,1,0) = 0. It can be seen
as a simple model of traffic jam (see [7]).

We first show that for the uniform Bernoulli measure 1, the words 11 and
00 are both vanishing. It can be easily checked that u = ugu;...u2,+1 € A~™(00)
implies that ujus...uz,41 is a left factor of a well-bracketed string (where 0
“opens” and 1 “closes”). As the proportion of such strings among all words of

length n tends to 0 as n grows to infinity, lim,, .+, A" 10(00) = 0 and 00 is not
persistent. A similar argument shows that 11 is also vanishing.

Because for all n there is at least one word of length n in Ly ,,(A), and
Ly,,(A) is stable by factor, and 00 and 11 are not in Ly, (A), we have
Ly, (184) = (0 +€)(10)*(1 + €) and 7,,(184) = {¥(01)*,“(10)~'}. O

We will now give a characterization of the persistent language of non sensitive
cellular automata. Before stating the theorem, we need a lemma expressing that
for infinitely many steps the preimages of a persistent word must contain any
given word at some fixed position.

Lemma 2. Let A be any CA of radius v and pu be any complete Bernoulli mea-
sure over Qa. Then, for any w € Q% andu € Ly, (A) there are positive integers
k1 and ko and a strictly increasing sequence of positive integers (nj)j>0 such that

Vi >0: A (u) N (Q;nj—kl—m\ fw) - Qiﬁ-kzﬂul Aw} - Qzlj—kg—|w‘) £ .

Proof. Suppose by contradiction that v € Ly ,(A) does not verify the lemma.
Then we have Vk > 0,3n; > 0,Vn > ng:

A7 (u) C Qz—k\wl(Qﬁv\ \ {w})kQ‘;{'(QE\U‘ \ {w})sz—k|w|.

Then, for any k and any n > ny, we have : A" u([u]o) < (1 — u([w]o))%. Thus,
A" p(u) — 0 as n — oo and u & Ly, (A). O

Theorem 1. Let A be a CA which is not sensitive to initial conditions and

any complete Bernoulli measure. Then Lr,,(A) is exactly the set of bricks of
wall for A.

Proof. First, consider a brick of wall u for A. By definition, there exists a
word w € Q% and positive integers ng and p such that Ve € [w]yiq and Vn > 0:
A"PT10(¢) € [u]mia. Thus A1 1([u]g) > p([w]o) which proves u € Ly, (A).

Conversely, let u € Lv,,,(A). By proposition 1, if A is not sensitive to initial
conditions, it has a brick of wall of size at least r (where r is the radius of A) as-
sociated with some wall W = (wy), .. Applying lemma 2 to wo, we know there
exist positive integers k; and ky and a strictly increasing sequence of positive
integers (nj)j>0 such that

Vji>0: A (u) N (Q;nj—k1—|w0| . {U}O} . Qf:41+k2+‘u| . {wO} . Q;nj—kz—‘wo‘) ?é .

Since QAIJr 2¥lul g finite, we can extract from (nj)

such that for some v € Qi\ﬁkﬁ‘ul we have:

>0 sub-sequence (njk)

k>0

VEk>0: A (u) N (Qzljkfhf\wo\ . {wo} cv- {wo} . QTAnjk*sz\wo‘) ;é 0.

By lemma 1, wovwy is the foot of a wall of A with a brick of size at least |v|.
By the above property, we conclude that u is a factor of such a brick of wall.
Therefore w is itself a brick of wall of A. O

Notice that theorem 1 implies that, for any CA A which is not sensitive to
initial conditions, the set 7},(A) is the same for any complete Bernoulli measure.

However, there exists some sensitive CA whose p-persistent set does depend
on the Bernoulli measure p as pointed out by A. Maass and P. Kurka in [1]: for
instance the “just gliders” CA A is sensitive to initial conditions and such that,
for any Bernouilli measure p, 7;,(A) is reduced to a single configuration if and
only if p gives the same probability to two peculiar letters of Q 4.

4 Undecidability Results

This section addresses different decision problems associated with the persistent
language of cellular automata. To simplify the statement of the studied prob-
lems, we will only consider the uniform measure. Thus, p will always denote the
uniform measure in this section (the working alphabet will be determined by the
context). However, all the results extend to complete Bernouilli measures using
lemma 2 and theorem 1 from previous section.

Remark 1. In his proof of undecidability of nilpotency [8], J. Kari actually shows
that it is undecidable to determine whether a given CA A with a spreading state
(a state s such that d4(a1,...,a,) = s whenever s € {aq,...,a,}) is nilpotent.
Moreover, it follows from theorem 1 that such a CA is u-quasi-nilpotent for any
Bernoulli measure p (since the only bricks of wall are the words s™, n € N). Thus,
it is undecidable to determine whether a p-quasi-nilpotent CA is nilpotent. O

Theorem 2. The set of p-quasi-nilpotent CA is not recursively enumerable.

Proof. Given a Turing machine M of states Qs and tape alphabet X' = {0,1, B}
working on a semi-infinite tape, we will construct a CA A of radius 1 that will
be quasi-nilpotent if and only if M doesn’t halt on the empty input.

The states of A will be {#} U (Ssimul X Ssignals) Where # is an inalterable
state, meaning that if a cell is in this state it will never change to any other state,
Ssimul = (Qar U{—1}) x X is the set of states needed to simulate the behavior of
M (a state (—, «) represents a cell of the tape containing the letter o without
the head and a state (g, «) represents that the head is on this cell in state ¢) and
Ssignals = {—,L,F,R, D} is a set of signals whose meaning and behavior will be
explained later.

The transition rule of the automaton can be described by the following rules:

— As said earlier, # states are inalterable. Since the automaton is of radius 1,
they act as delimiters or walls, no information can go across them. A finite
set of contiguous non-# cells between two # states will be referred to as a
segment. The length of the segment will be the number of cells between the
two # states.

— At all times, all cells not in the # state will simulate the behavior of M on
their first component. We deal with conflicts (two heads that want to move
on a cell for example) in any given way, since we’ll see that these have no

impact on what we’ll do later (ultimately, we’ll only be interested in regular
simulations starting on an empty input). If at some point in the computation
the head wants to move to a cell in state #, the head is deleted so that the
computation cannot end.

— The signal — means that there is in fact no particular signal on the cell.

— If at some point in the computation the final state g of M is reached, the cell
where this state appears generates a signal F' (on its “signal” component).

— The F signal moves towards the left at maximum speed. When it reaches
the left border of the segment (#) it turns into an R signal.

— The R signal will move to the right and while doing so it will reset the
computation that is held on the first component of the cells it moves through,
meaning that it will put the head in its initial state gy on the first cell of the
segment and put a blank symbol B on every cell of the tape. Since this signal
moves at maximum speed, the simulation of M can occur without problems
on a clean tape.

— When the R signal meets the right end of the segment it disappears.

— During all this time, the rightmost cell of a segment (any cell that is on the
left of a # cell) will generate L signals at every time.

— L signals move to the left at maximum speed. When one of these signals
reaches the left border of a segment, it generates a D signal.

— The D signals delete the whole segment by moving to the right while chang-
ing all the cells they go through into #. They obviously disappear when they
meet a # cell since they can’t go any further.

All the signals that we use move at maximum speed (one cell per step) in
one of the two available directions. Signals going in opposite directions are not
allowed to cross each other, thus, one of the two must disappear. The priority is
as follows:

L<F<R<D

For example, if an R signal is moving to the right (while cleaning the com-
putation) and an L signal is moving to the left, when they meet the R signal
keeps moving to the right and the L signal disappears.

Let’s assume that M halts in ¢ steps and let’s consider the segment of length
2t in which there are no signals on any cell, the first cell is in state (go, B) and all
other cells are in state (—, B). On this segment, the simulation of M starts from
a well formed configuration so it will reach the gy state after ¢ steps and generate
an F signal. Meanwhile L signals appear from the right border and move to the
left. Because the segment is of length 2¢, the F' signal appears on the left of all L
signals, so it reaches the origin before all L signals and creates an R signal. This
R signal will reset the computation while deleting all L signals. From there a new
computation starts that will have enough time to finish again and delete the L
signals again. Because the segment is “protected” from any outside interference
by the # cells, this cycle will continue forever and no # state will appear on the
segment. Because there are only a finite number of possible configurations on
the segment the automaton eventually enters a cycle on this non-empty segment.

According to theorem 1 this segment is part of the persistent language so A is
not p-quasi-nilpotent.

Now we will assume that M doesn’t halt and show that any segment of length
n disappears after at most 5n steps. The proof is based on the observation that
we can’t delay the apparition of a D signal on the first cell of the segment for
more than 4n steps.

It’s possible that there was already a D signal somewhere on the segment in
the inital configuration. In this case, the D signal will cut the segment in two
by creating a # state where it was initially and then delete the right part of
the segment. This means that if there is a D signal on a segment in the initial
configuration we can focus on a shorter segment on which there is no D initially
and let the already present D take care of the rest of the segment.

Therefore we can assume that the segment we are studying doesn’t contain
any D initially. This means that after at most n steps all original R signals will
have disappeared. From there, L signals will start appearing on the right border
of the segment and try to proceed to the left (they would arrive at time 2n).
To stop them from reaching the left border and generating a D signal, the only
possibility is to generate an R signal on the left border of the segment before the
time 2n. From there, the R signal will reset the configuration of the simulation
so that what is computed on the left of this R signal is a normal computation of
M on the empty input. Since we have assumed that M doesn’t halt, this “well
formed” computation will not reach the g state. When the R signal reaches the
right end of the segment (at time at most 3n), it disappears and the L signals
start moving to the left again. Since the simulation of M doesn’t reach the final
state no F' signal is generated so there’s nothing to stop the L signals from
reaching the left border, generate a D signal and delete the whole segment. The
whole segment is therefore deleted after at most 5n steps.

To complete the proof, we need only show that in this case (if M doesn’t
halt) no other state than # can appear in a brick of wall. Let’s consider a
wall W = (w;)ien. Let’s consider the configuration c¢,, containing # states
everywhere except on its center where it is the word wgy. Obviously ¢y, is in
[wo]mia and doesn’t contain any segment longer than |wg| so no segment will
survive more than 5|wg| steps, which means that for any n > 5|wg|, A" (Cuw,) is
the uniform # configuration, which implies that w,, € #*. From theorem 1 we
conclude that A is p-quasi-nilpotent. a

Corollary 1. Given a CA A and a word w, the property that w is not persistent
for A is not semi-decidable. In other words the set {(A,w)|w ¢ Lr,,(A)} is not
recursively enumerable.

Proof. We know that a CA is quasi-nilpotent if and only if only one of its states
is persistent. If we could semi-decide that a given state is not persistent, then we
could use this algorithm on all states in parallel and if the CA is quasi-nilpotent
the algorithm would eventually show that all but one states are not persistent,
thus showing that the CA is quasi-nilpotent. We would therefore have an algo-
rithm to semi-decide that a CA is quasi-nilpotent, which is in contradiction with
theorem 2. a

Remark 2. The proof above shows that it is also undecidable to determine
whether the persistent set is finite or not. Indeed, it is not difficult to check
that the persitent set of the constructed CA is either reduced to a single config-
uration or infinite. a

Theorem 3. There exists a CA with a non-recursive persistent language.

Proof (sketch). It is possible to show this by slightly modifying the CA con-
structed in the proof of theorem 2. To do so we use another layer in the states so
that each regular cell of a segment also has a “memory” containing a tape sym-
bol. The memory of a cell can never be changed (except when the cell becomes
in which case the memory is lost). Instead of starting from an empty input
when the simulation of M is reset by an R signal it’s the memory of each cell
that’s written on the tape. This way we can simulate the behavior of M on any
input. It is then easy to prove that a segment survives if and only if the memory
of its cells corresponds to a word wB* where M (w) ends using less than |w| + k
cells.

If the persistent language of A is recursive, then the language #wB such
that M (w) halts is also recursive: there is a segment in the persistent language
whose memory layer is wB*, so there is a word of memory #wB (stability by
factor). Therefore if the domain of M is not recursive neither is Ly, (A).

Theorem 4. The set of p-quasi-nilpotent CA is not co-recursively enumerable.

Proof. As with the proof of theorem 2, we will consider a Turing machine M
and create a cellular automaton A of radius 1 that simulates M. A will be quasi-
nilpotent if and only if M halts on the empty input. The idea is that we will again
simulate the behavior of M on each segment but now if the simulation doesn’t
halt the right # of the segment will be erased so that the available space for
the simulation is increased, and the simulation will start again. If at some point
the simulation ends then the segment is erased. This way non-empty segments
will remain on the configuration if the machine M doesn’t halt but almost every
segment will be deleted if the machine halts.

The construction will be very similar to the one of the proof of Theorem 2.
The states of A are now {#} U (Ssimul X Ssignats X {0, 1}), the new set of signals
being Ssignals = {—, L, R, D, Dy, Dr,Cr,Cr}. The added bit doesn’t affect the
computation and never changes on a cell. We'll call it neutral bit.

The evolution of the automaton is described as follows:

— The # state is now “almost” inalterable in the sense that only one particular
signal (D) can erase it. We will continue to use the notion of segment (finite
set of contiguous cells between two #).

— The simulation of M takes place on each segment as in the previous con-
struction.

— L signals will appear continuously on the right border of a segment and
proceed to the left.

— When an L signal meets the # cell at the left border of the segment it turns
into a D signal.

— D signals move to the right. They erase all L signals they meet. If a D signal
finds a final state ¢y in the simulation of M, it generates two signals Dy, and
Dp, that will erase the segment (turn all cells into #) by propagating to the
left and right respectively until they reach the end of the segment. If the
D signal doesn’t see any gy state and reaches the right # of the segment it
turns it into a regular cell whose neutral bit is the same as its left neighbor
and creates two signals C';, and Cr on the cells next to where the # cell was.

— The C and Cg signals move to the left and to the right respectively. Their
function is to clear the segment so that a fresh simulation of M can start
back from the beginning. Both signals will erase any signal they come across,
C1, having the priority over C'r. When the Cp, signal reaches the beginning
of the segment it turns into an R signal. When the Cp signal reaches the
end of the segment it disappears.

— The R signal moves to the right and resets the simulation as it moves as in
the previous proof. It also erases all L signals.

Proving the theorem from this construction will now be similar to the proof
of theorem 2. The # states can only be deleted by a signal that comes from
their left so if two segments merge it’s because the merging signal came from the
leftmost of the two segments while the rightmost one can do nothing to prevent
it. We’ll say that the the left segment invades the right one.

Let’s see what happens if M doesn’t halt on empty input. In that case a
“normal” simulation of M will never reach the gy state so the Dy and Dg
signals should never appear. On any segment where there are initially no signals
and no simulation of M going on L signals will appear, reach the left border, and
generate an R signal that will start a new correct simulation. This simulation
will not end so the segment will eventually invade the one on its right and when
doing so C, and Cg signals will appear to clean the segment and a new correct
simulation will again take place on the wider segment, etc. Since no matter
how wide the segment is the simulation will never end the segment will never
disappear. It is also possible that the segment we have considered is eventually
invaded but when the invasion occurs C and Cg signals appear that will clean
the wider segment and ensure that the new simulation that takes place on this
segment is also correct so again there’s no risk that the segment disappears.

In other words, if M doesn’t halt, any “inactive” segment on the initial
configuration will grow and survive forever (the cells that were initially on this
segment will never become #). Let s be such an “inactive” segment of length
2k + 1 including the border #, then for all n € N and all w € Q7

wsw € U AT (g)
1€Qa\{#}

This means that >- o .\ (zy A"1(@) = p([s]o) so at least one of the non-#
states is persistent. By symmetry, changing the neutral bit doesn’t change the
persistent nature of the state so we have at least two persistent states and A is
not quasi-nilpotent.

Now we have to check that if the machine M halts in ¢ steps then no other
state than # is persistent. Let’s consider a segment s of length | > 2¢ on which
there is no simulation of M going on and the only signal present is an R signal
on the first cell. While this segment is not invaded, it will simply do correct
simulations of M, reach the final state in time so that the D signal sees it, the
Dy, and Dp signals will therefore appear and turn the whole segment into #.
This means that such a segment doesn’t invade its right neighbor. Moreover, if
it happens to be invaded by its left neighbor, the invasion will make C} and
CR segments appear, which will ensure that on this new segment a new correct
simulation starts. The segment will do correct simulations and grow until it’s
big enough so that a simulation ends. This will happen before all the # from s’s
disappearance have been deleted because there will be enough room to complete
a simulation before that so this other segment will also turn to # before going
past the initial boundaries of s. This means that if M terminates there exists a
segment such that no matter what happens it will never invade its right neighbor.
We'll call such a segment non-invasive.

Let’s see what happens to a segment such that there is a non-invasive segment
on its left at a distance d; (the distance is taken from the right border of the
non-invasive segment to the left border of the considered segment) and a # on
its right at a distance d, > 2¢ (taken from the right border of the segment).

While the segment is not invaded it will after some time that we can bound
easily depending on its length start a correct simulation or be completely deleted
(because the L signals cannot be delayed forever). From there it will continuously
do simulations and invade its neighbors if the simulations do not halt. Since there
is a # at a distance d, > 2t, the simulation will eventually end before this #
symbol is deleted since the segment will be wide enough, so the segment will
eventually disappear. The only thing that could delay the disappearance of the
segment would be a series of invasion of the segment. However, since there is a
non-invasive segment on the left of segment, we know that there is only a limited
number of possible invasions so we can bound the time until all possible invasions
have occurred. From there, the simulation will start correctly on a segment that
will not be invaded and will therefore disappear.

To sum up, we have shown that if M halts, there exists a function ¢ : N> — N
such that any segment that has a non-invasive segment on its left at a distance
d; and a # cells on its right at a distance d,. > 2t, will disappear after at most
o(dy, d,) steps. This means that for any n > o(d;,d,) and any ¢ € Q 4\ {#}, any
word in A~"(g) has no non-invasive segment on the cells left of the position —d;
and no two # symbols on the cells between positions 2¢ and d,. (the first one
is the end of the segment, that can possibly be deleted by an already-present
D signal). This restriction implies that none of these states is persistent (see
lemma 2). O

Corollary 2. Given a CA A and a word w, the property that w is persistent
for A is not semi-decidable. In other words the set {(A,w)|lw € Ly, (A)} is not
recursively enumerable.

5 Conclusion and Perspectives

We proved that the u-quasi-nilpotency property is neither recursively enumer-
able nor co-recursively enumerable. In our opinion, such a result has two in-
teresting aspects. First, it deals with a kind of problem rarely considered in the
literature: a property of “typical” or random configurations only. We believe that
such properties are closer to what experimental observations may capture and
therefore that our undecidability results have a stronger meaning to physicists
or other scientists concerned with modelling using cellular automata. Second,
it gives an example of a “natural” property of cellular automata with a high
Turing degree (few examples are known, see [9]).

A natural way to continue the study of the computational complexity of
persistent sets would be to try to prove a Rice theorem for p-limit sets. Any
property concerning limit sets is either trivial or undecidable. Is it the same for
p-limit sets?

Another interesting research direction would be to understand better how
the probability of appearance of some word can vary with time. More precisely,
we left open a very simple question: do we have Ly, (A) = Ly, (A?") for any CA
A and any t ?

Finally, we can also consider extensions of our work to a broader class of
measures or by raising the dimension. In the latter case, the notion of wall
does not play the same role (a finite pattern does not cut a bi-dimensional
configuration into two disconnected components) and the case of non-sensitive
CA is to be reconsidered.

References

1. Kurka, P., Maass, A.: Limit Sets of Cellular Automata Associated to Probability
Measures. Journal of Statistical Physics 100(5-6) (2000) 1031-1047

2. Wolfram, S.: Universality and complexity in cellular automata. Physica D 10 (1984)
1-35

3. Kurka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic
Theory and Dynamical Systems 17 (1997) 417-433

4. Mazoyer, J., Rapaport, I.: Inducing an Order on Cellular Automata by a Grouping
Operation. In: Symposium on Theoretical Aspects of Computer Science, Lecture
Notes in Computer Science (1998)

5. Culik, II, K., Pachl, J., Yu, S.: On the limit sets of cellular automata. SITAM Journal
on Computing 18(4) (1989) 831-842

6. Kari, J.: Rice’s theorem for the limit sets of cellular automata. Theoretical Computer
Science 127 (1994) 229-254

7. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J.
Phys. 2 (1992) 2221-2229

8. Kari, J.: The Nilpotency Problem of One-dimensional Cellular Automata. SIAM
Journal on Computing 21 (1992) 571-586

9. Sutner, K.: Cellular automata and intermediate degrees. Theoretical Computer
Science 296 (2003)

