TD 7 - Machines de Turing

Exercice 1. Caisse à outils

Trouvez vous-même un tas d'outils très utiles!

- **1.** Donner une bijection b de $\mathbb{N}^2 \to \mathbb{N}$.
- **2.** Donner une bijection de \mathbb{N}^3 dans \mathbb{N} , de \mathbb{N}^4 dans \mathbb{N} ...
- 3. Donner une bijection ξ de \mathbb{N}^* (l'ensemble des suites finies d'entiers) dans \mathbb{N} . Note : On pourra se baser sur le fait que tout entier naturel $n \notin \{0,1\}$ a une décomposition en produit de facteurs premiers.
- **4.** Prouvez qu'il n'existe pas de bijection entre l'ensemble $E = \{0,1\}^{\mathbb{N}}$ des suites infinies de $\{0,1\}$ et \mathbb{N} . En déduire qu'il n'existe pas de bijection entre \mathbb{R} et \mathbb{N} .

Exercice 2. Vers l'infini et au-delà!

Pour s'échauffer:

1. Construire une machine de Turing *M* qui écrit 0 1 0 1 0 1 0 ... sur un ruban blanc. *Pour ceux qui douteraient de l'intérêt de cette question, s'adresser à A. Turing.*

Passons aux choses sérieuses :

On définit un nouveau modèle de machine de Turing fonctionnant avec un ruban infini des deux côtés, c'est à dire qu'à l'état initial l'entrée est écrite quelque part sur le ruban, et il n'y a que des blancs partout ailleurs sur le ruban infini. (Formellement, on peut dire que les cases du ruban sont indexées par $\mathbb Z$ au lieu d'être indexées par $\mathbb N$ pour un ruban classique, infini à droite).

2. Donner l'intuition pour qu'une telle machine de Turing avec ruban infini des deux côtés peut être simulée par une machine de Turing avec ruban infini à droite, et vice versa.

Exercice 3. *Je te lis* \mathfrak{I} *tu me lis* \mathfrak{I} ...

Construisez les machines de Turing suivantes :

- **1.** M à un ruban sur l'alphabet $\{0,1,_\}$ qui multiplie par 2 son entrée binaire.
- 2. M à un ruban sur l'alphabet $\{0,1,_\}$ qui multiplie par 2 et ajoute 1 à son entrée binaire.
- 3. M à un ruban sur l'alphabet $\{0,1, _\}$ qui ajoute 1 à son entrée binaire.
- **4.** *M* qui accepte $\{a^{2^n} \mid n \ge 0\}$.
- **5.** *M* qui code en binaire son entrée unaire.

Exercice 4.

Ou tu veux ou tu veux pas.

Soit $\Sigma = \{0,1\}$ un alphabet et soit x un mot de Σ^* . Construire des machines de Turing telles que :

- 1. lisant x la machine écrit x^{-1} (x écrit à l'envers)
- **2.** la machine accepte x ssi x s'écrit yy^{-1} pour un certain $y \in \Sigma^*$.

3. la machine accepte x ssi x s'écrit yy pour un certain $y \in \Sigma^*$.

Exercice 5. L'école primaire d'Alan

Construire une machine de Turing qui effectue :

- 1. L'addition de deux entiers.
- 2. La multiplication de deux entiers.
- **3.** La composition de deux fonctions, étant données les machines calculant chacune des fonctions.