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Abstract

An identifying code of a graph G is a dominating set C such that every vertex x of G is distinguished from
other vertices by the set of vertices in C that are at distance at most 1 from x. The problem of finding
an identifying code of minimum possible size turned out to be a challenging problem. It was proved by
N. Bertrand, I. Charon, O. Hudry and A. Lobstein that if a graph on n vertices with at least one edge
admits an identifying code, then a minimal identifying code has size at most n− 1. They introduced classes
of graphs whose smallest identifying code is of size n − 1. Few conjectures were formulated to classify the
class of all graphs whose minimum identifying code is of size n− 1.

In this paper, disproving these conjectures, we classify all finite graphs for which all but one of the
vertices are needed to form an identifying code. We classify all infinite graphs needing the whole set of
vertices in any identifying code. New upper bounds in terms of the number of vertices and the maximum
degree of a graph are also provided.
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1. Introduction

Given a graph G, an identifying code of G is a subset C of vertices of G such that the subset of C at
distance at most 1 from a given vertex x is nonempty and uniquely determines x. Identifying codes have
been widely studied since the introduction of the concept in [14], and have been applied to problems such as
fault-diagnosis in multiprocessor systems [14], compact routing in networks [15], emergency sensor networks
in facilities [17] or the analysis of secondary RNA structures [13].

The concept of identifying codes of graphs is related to several other concepts, such as locating-dominating
sets [20, 19] for graphs and the well-celebrated theorem of Bondy [1] on set systems.

The purpose of this paper is to classify extremal cases in some previously known upper bounds for the
minimum size of identifying codes and thus also improving those upper bounds. We begin by introducing
our terminology.

Unless specifically mentioned G = (V,E) will be a finite simple graph with n = |V | being the number of
vertices. The degree of a vertex x is denoted deg(x). By ∆(G) we denote the maximum degree of G.

For two vertices x and y of G, we denote by dG(x, y) (or d(x, y) if there is no ambiguity) the distance
between x and y in G. The ball of radius r centered at x, denoted Br(x), is the set of vertices at distance
at most r of x. We note that x belongs to Br(x) for every r. A vertex x of G is universal if B1(x) = V (G).
Given a subset S of V (G), we say that a vertex x is S-universal if S ⊆ B1(x). The symmetric difference of two
sets A and B is denoted by A⊖B. Given a pair of vertices of a graph G, we write ⊖r(x, y) = Br(x)⊖Br(y).
Two vertices x and y are called twins in G if B1(x) = B1(y). A graph is called twin-free if it has no pair of
twin vertices. The complement of a graph G is denoted by G. For r ≥ 2, the rth-power of G, is the graph
Gr = (V,E′) with E′ = {xy | x, y ∈ V, dG(x, y) ≤ r}. Conversely if Hr ∼= G, then we say H is an r-root
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of G. We denote by G − x the graph obtained from G by removing x from V (G) and all edges containing
x from E(G). For two graphs G1 = (V1, E1) and G2 = (V2, E2), G1 ⊲⊳ G2 is the join graph of G1 and G2.
Its vertex set is V1 ∪ V2 and its edge set is E1 ∪ E2 ∪ {x1x2 | x1 ∈ V1, x2 ∈ V2}. We denote by Kn, the
complete graph on n vertices, by Pn, the path on n vertices, and by Ka,b, the complete bipartite graph with
bipartitions of sizes a and b.

Given a graph G and an integer k ≥ 2, a subset I of vertices of G is called a k-independent set if for all
distinct vertices x, y of I, dG(x, y) ≥ k. A 2-independent set is simply an independent set. Given an integer
r ≥ 1, a subset S of vertices of G is called an r-dominating set if for every vertex x of G, Br(x) ∩ S 6= ∅.
We say that S r-separates two vertices x and y, if Br(x) ∩ S 6= Br(y) ∩ S. A subset S of vertices is an
r-separating set if it r-separates all distinct vertices x, y of G. If S is both r-dominating and r-separating,
S is an r-identifying code [14]. If S is r-dominating and r-separates vertices of V (G) \ S, it is called an
r-locating-dominating set [20]. Given a bipartite graph G with a partition V = I ∪ A, a subset S of A is
said to be an r-discriminating code [5] if S r-separates all pairs of distinct vertices of I.

In each of the previous concepts when r = 1, we simply use the name of the concept without specifying
the value of r.

Note that a set C is an r-separating set of G (resp. r-identifying code) if and only if it is a separating
set (resp. identifying code) of Gr. A graph G admits a separating set (resp. identifying code) if and only if
it is twin-free, as a consequence it admits an r-separating set (resp. r-identifying code) if and only if Gr is
twin-free [6].

For a graph G, the minimum cardinalities of an r-dominating set and of an r-locating-dominating set
are commonly denoted by γr(G) and γLD

r (G). If Gr is twin-free, we denote by γID

r (G) (respectively γS

r(G))
the minimum cardinality of an r-identifying code (r-separating set) of G. It is clear from the definition that
γS

r(G) ≤ γID

r (G) ≤ γS

r(G) + 1.
While the exact value of γID for some classes of graphs has been determined [3, 4], finding the value of

γID

r (G) for a general graph G is known to be NP-hard for any r ≥ 1 [9, 7].
Upper bounds, in terms of basic graph parameters, have been given for the minimum sizes of the

corresponding sets for most of the previously defined concepts. In particular it has been shown that
γLD

r (G) ≤ |V (G)| − 1 and, assuming G is twin-free and G 6∼= Kn, γ
ID

r (G) ≤ |V (G)| − 1 (see [19, 12, 8]).
For the case of locating-dominating sets, it was proved in [19] that for a connected graph G we have

γLD(G) = |V (G)| − 1 if and only if G is either a star or a complete graph.
In this paper, we do the analogous classification for identifying codes. In the case of identifying codes, the

class of graphs reaching this bound is a much richer family. Thus we answer, in negative, the two attempted
conjectures for such classification [18, 5]. This gives a partial answer to a question posed in [5]. This is done
in Section 3.

All the previous definitions can easily be extended to infinite graphs. Examples of nontrivial infinite
graphs for which the whole vertex set is needed to form an identifying code are given in [8]. We classify all
such infinite graphs in Section 4. In Section 5 we introduce new upper bounds for γID in terms of n and ∆.
In all these sections we address the problem of identifying codes only for r = 1 . In Section 6 we consider
general r-identifying codes.

The next section provides a set of preliminary results.

2. Preliminary results

In this section we have put together some basic results necessary for our main work. These results could
be useful in the study of identifying codes in general. We start by recalling the following theorem.

Theorem 1 ([2, 12]). Let G be a twin-free graph on n vertices having at least one edge. Then γID(G) ≤ n−1.

It is shown in [8] that this bound is tight. In particular it is shown that for any t ≥ 2, γID(K1,t) = t. A
stronger result is proved in Section 5 (see Lemma 19).

The next lemma is an obvious but a crucial one.
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Lemma 2. Let G be a twin-free graph and let C be an identifying code of G. Then, any set C′ ⊆ V (G)
such that C ⊆ C′ is an identifying code of G.

The next proposition is useful in proving upper bounds on minimum identifying codes by induction.

Proposition 3. Let G be a twin-free graph and S ⊆ V (G) such that G − S is twin-free. Then γID(G) ≤
γID(G− S) + |S|.

Proof. Take a minimum code C0 of G − S. Consider the vertices of S in an arbitrary order (x1, . . . , x|S|).
Using induction we extend C0 to a subset Ci of G which identifies the vertices in Vi = V (G)\{xi+1, . . . , x|S|}.
To do this, if Ci−1 identifies all the vertices of Vi, we are done. Otherwise, since all the vertices in Vi−1 are
identified, either B1(xi) ∩ Ci−1 = B1(y) ∩ Ci−1 for exactly one vertex y in Vi−1, or xi is not dominated by
Ci−1. In the first case xi and y are separated in G by some vertex, say u, so let Ci = Ci−1 ∪ {u}. In the
second case, let Ci = Ci−1 ∪ {xi}. Now, in both cases, Ci identifies all the vertices of Vi. At step |S|, C|S|

is an identifying code of G of size at most |C0|+ |S| ≤ γID(G− S) + |S|.

We will need the following special case of the previous proposition.

Corollary 4. Let G be a connected graph with γID(G) = |V (G)| − 1, G ≇ K1,2, then there is a vertex x of
G such that G− x is still connected and γID(G− x) = |V (G− x)| − 1.

Proof. If G ∼= K1,t, t 6= 2, then any leaf vertex works. Thus, we may suppose G ≇ K1,t. Then by Theorem 1,
there is a vertex x of G such that V (G − x) is an identifying code of G and thus G − x is twin-free and
G − x ≇ Kn. By Proposition 3, we have γID(G − x) ≥ γID(G) − 1 = |V (G − x)| − 1. Equality holds
since otherwise γID(G) = |V (G)|. To complete the proof, we show that x can be chosen such that G − x
is connected. To see this, assume G − x is not connected. Since γID(G − x) = |V (G − x)| − 1, except one
component, every component of G− x is an isolated vertex. If there are two or more such isolated vertices,
then either one of them can be the vertex we want. Otherwise there is only one isolated vertex, call it y.
Now if G− y is twin-free, then y is the desired vertex, else there is a vertex x′ such that B1(x

′) = B1(x)− y.
Then G− x′ is connected and twin-free.

Lemma 5. Let G be a twin-free graph and let v ∈ V (G). Let x, y be a pair of twins in G− v. If G− x or
G− y has a pair of twins, then v must be one of the vertices of the pair.

Proof. Since v separates x and y, it is adjacent to one of them (say x) and not to the other. Suppose z, t are
twins in G− x. Suppose z is adjacent to x and t is not. If z 6= v then y is also adjacent to z and, therefore,
t is also adjacent to y which implies x being adjacent to t. This contradicts the fact that x separates z and
t. The other case is proved similarly.

Proposition 6. Let G1 and G2 be twin-free graphs such that for every minimum separating set S there is an
S-universal vertex. If G1 ⊲⊳ G2 is twin-free, then we have γS(G1 ⊲⊳ G2) = γS(G1)+γS(G2)+1. Furthermore,
if S is a separating set of size γS(G1) + γS(G2) + 1 of G1 ⊲⊳ G2, then there is an S-universal vertex.

Proof. Let S be a minimum separating set of G1 ⊲⊳ G2. Since vertices of G2 do not separate any pair of
vertices in G1 then S∩V (G1) is a separating set of G1. By the same argument S∩V (G2) is a separating set
of G2. Therefore, |S| ≥ γS(G1)+γS(G2). But if |S| = γS(G1)+γS(G2), then there is an [S∩V (G1)]-universal
vertex x in G1 and an [S ∩ V (G2)]-universal vertex y in G2. But then, x and y are not separated by S.

Given a separating set S1 of G1 and a separating set S2 of G2, the set S1∪S2 separates all pairs of vertices
except the S1-universal vertex of G1 from the S2-universal vertex of G2. But since G1 ⊲⊳ G2 is twin-free, we
could add one more vertex to S1 ∪ S2 to obtain a separating set of G1 ⊲⊳ G2 of size γS(G1) + γS(G2) + 1.

For the second part assume S is a separating set of size γS(G1) + γS(G2) + 1 of G1 ⊲⊳ G2. Then we have
either |S ∩ V (G1)| = γS(G1) or |S ∩ V (G2)| = γS(G2). Without loss of generality assume the former. Then
there is an [S ∩ V (G1)]-universal vertex z of G1. Since z is also adjacent to all the vertices of G2, it is an
S-universal vertex of G1 ⊲⊳ G2.
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In Proposition 6 if G1 ≇ K1 and G2 ≇ K1, then γID(G1 ⊲⊳ G2) = γS(G1 ⊲⊳ G2) = γS(G1) + γS(G2) + 1.
The following lemma was discovered in a discussion between the first author, R. Klasing and A. Kosowski.

We include a proof for the sake of completeness.

Lemma 7 ([11]). Let G be a connected twin-free graph, and I be a 4-independent set such that for every
vertex x of I, the set V (G) \ {x} is an identifying code of G. Then C = V (G) \ I is an identifying code of
G.

Proof. Clearly C is a dominating set of G. Let x, y be a pair of vertices of G. If they both belong to I,
C ∩ B1(x) 6= C ∩ B1(y) because of the distance between x and y. Otherwise, one of them, say x, is in
C. If they are not separated by C, then they must be adjacent. Thus, together they could have only one
neighbour in I, call it u. This is a contradiction because V (G) \ {u} identifies G.

We note that 4 is the best possible in the previous lemma. For example, let G = P4 and assume x and
y are the two ends of G. It is easy to check that V (G) \ {x} and V (G) \ {y} are both identifying codes of
G but V (G) \ {x, y} is not.

3. Graphs with γID(G) = |V (G)| − 1

In this section we classify all graphs G for which γID(G) = |V (G)| − 1. As already mentioned, stars are
examples of such graphs. To classify the rest we show that special powers of paths are the basic examples of
such graphs. Then we show that any other example is mainly obtained from the join of some basic elements.

Definition 8. For an integer k ≥ 1, let Ak = (Vk, Ek) be the graph with vertex set Vk = {x1, . . . , x2k} and
edge set Ek = {xixj

∣

∣ |i − j| ≤ k − 1}.

xk+1 xk+2 xk+3 ...
x2k−1 x2k

x1 x2 x3

...
xk−1 xk

Clique on {xk+1, ..., x2k}

Clique on {x1, ..., xk}

Figure 1: The graph Ak which needs |V (Ak)| − 1 vertices for any identifying code

An illustration of graph Ak is given in Figure 1. We note that for k ≥ 2 we have Ak = P k−1
2k and

A1 = K2. It is also easy to check that the only nontrivial automorphism of Ak is the mapping xi → x2k+1−i.
It is not hard to observe that Ak is twin-free, ∆(Ak) = 2k − 2 and that Ak and Ak are connected if k ≥ 2.

Proposition 9. For k ≥ 1, we have: γS(Ak) = 2k − 1 with B1(xk) and B1(xk+1) being the only separating
sets of size 2k − 1 of Ak. Furthermore, if k ≥ 2, γID(Ak) = 2k − 1.

Proof. Let S be a separating set of Ak. For i < k, we have ⊖(xi, xi+1) = {xi+k} and for k < i ≤ 2k− 1, we
have ⊖(xi, xi+1) = {xi−k+1}. Thus, {x2, . . . , x2k−1} ⊂ S. But to separate xk and xk+1, we must add x1 or
x2k. It is now easy to see that Vk \ {x1} = B1(xk+1) and Vk \ {x2k} = B1(xk), each is a separating set of
size 2k − 1. If k ≥ 2, then they both dominate Ak and therefore are also identifying codes.

In the previous proof in fact we have also proved that:
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Corollary 10. For k ≥ 1 every minimum separating set S of Ak has a S-universal vertex.

Let A be the closure of {Ai | i = 1, 2, . . .} with respect to operation ⊲⊳. It is shown below that elements
of A are also extremal graphs with respect to both separating sets and identifying codes.

Proposition 11. For every graph G ∈ A, we have γS(G) = |V (G)| − 1. Furthermore, every minimum
separating set S of G has an S-universal vertex.

Proof. The proposition is true for basic elements of A by Proposition 9 and by Corollary 10. For a general
element G = G1 ⊲⊳ G2 it is true by Proposition 6 and by induction.

Corollary 12. If G ∈ A and G ≇ A1, then γID(G) = |V (G)| − 1.

Further examples of graphs extremal with respect to separating sets and identifying codes can be obtained
by adding a universal vertex to each of the graphs in A, as we prove below.

Proposition 13. For every graph G in A ⊲⊳ K1 we have γID(G) = γS(G) = |V (G)| − 1.

Proof. Assume G = G1 ⊲⊳ K1 with G1 ∈ A, and assume u is the vertex corresponding to K1. Suppose
S is a minimum separating set of G. We first note that since S ∩ V (G1) is a separating set of G1, we
have |S ∩ V (G1)| ≥ |V (G1)| − 1. But if |S ∩ V (G1)| = |V (G1)| − 1, then by Proposition 11, there is an
[S ∩ V (G1)]-universal vertex y of G1. Then y is not separated from x. Thus |S ∩ V (G1)| = |V (G1)| and
therefore S = V (G1). It is easy to check that S is also an identifying code.

It was proved in [8] that γID(Kn \M) = n − 1 where Kn \M is the complete graph minus a maximal
matching. We note that this graph, for even values of n, is the join of n

2 disjoint copies of A1, thus it belongs
to A. For odd values of n, it is built from the previous graph by adding a universal vertex.

So far we have seen that γID(G) = |V (G)| − 1 for G ∈ {K1,t | t ≥ 2} ∪ A ∪ (A ⊲⊳ K1), G 6∼= A1.
We also know that γID(Kn) = n. More examples of graphs with γID(G) = |V (G)| − 1 can be obtained
by adding isolated vertices. In the next theorem we show that for any other twin-free graph G we have
γID(G) ≤ |V (G)| − 2.

Theorem 14. Given a connected graph G, we have γID(G) = |V (G)| − 1 if and only if G ∈ {K1,t | t ≥
2} ∪ A ∪ (A ⊲⊳ K1) and G 6∼= A1.

Proof. The “if” part of the theorem is already proved. The proof of the “only if” part is based on induction
on the number of vertices of G. For graphs on at most 4 vertices this is easy to check. Assume the claim is
true for graphs on at most n− 1 vertices and, by contradiction, let G be a twin-free graph on n ≥ 5 vertices
such that γID(G) = n− 1 and G /∈ {K1,t | t ≥ 2} ∪ A ∪ (A ⊲⊳ K1).

By Corollary 4 there is a vertex x ∈ V (G) such that G−x is connected and γID(G−x) = |V (G−x)|− 1.
By the induction hypothesis we have G − x ∈ {K1,t | t ≥ 2} ∪ A ∪ (A ⊲⊳ K1). Depending on which one of
these 3 sets G− x belongs to, we will have 3 cases.

Case 1, G − x ∈ {K1,t | t ≥ 2}. In this case we consider a minimum identifying code C of G − x. If
C does not already identify x then either deg(x) ≤ 3 or deg(x) ≥ n− 2. We leave it to the reader to check
that in each of these cases, there is an identifying code of size n− 2.

Case 2, G − x ∈ A. We consider two subcases. Either G − x ∼= Ak for some k or G − x = G1 ⊲⊳ G2,
with G1, G2 ∈ A.

(1) G − x ∼= Ak, for some k ≥ 2. If x is adjacent to all the vertices of G − x, then G ∈ A ⊲⊳ K1 and
we are done. Otherwise there is a pair of consecutive vertices of Ak, say xi and xi+1, such that one
is adjacent to x and the other is not. By the symmetry of Ak we may assume i ≤ k. We claim that
C = V (G) \ {x1, x} or C′ = V (G) \ {x2k, x} is an identifying code of G. This would contradict our
assumption. We first consider C and note that C ∩ V (Ak) is an identifying code of Ak. If x is also
separated from all the vertices of G− x then we are done. Otherwise there will be two possibilities.

First we consider the possibility: x is not adjacent to xi and adjacent to xi+1. In this case each vertex
xj , j > i + k, is separated from x by xi+1 and each vertex xj , j < i + k, is separated from x by xi.
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Thus x is not separated from xi+k. In the other possibility, x is adjacent to xi and not adjacent to
xi+1. A similar argument implies that x is separated from every vertex but x1. In either of these two
possibilities, C′ would be an identifying code.

(2) G− x ∼= G1 ⊲⊳ G2 with G1, G2 ∈ A. If x is adjacent to all the vertices of G− x, then G ∈ A ⊲⊳ K1 and
we are done. Thus there is a vertex, say y, that is not adjacent to x. Without loss of generality, we can
assume y ∈ V (G1). Let C1 be an identifying code of size γID(G1) = |V (G1)| − 1 of G1 which contains
y. The existence of such an identifying code becomes apparent from the proof of Proposition 11.
Then C = C1 ∪ V (G2) is an identifying code of G1 ⊲⊳ G2 of size |V (G1 ⊲⊳ G2)| − 1 = |V (G)| − 2.
Thus C does not separate a vertex of G1 ⊲⊳ G2 from x. Call this vertex z. Since y ∈ C, z is not
adjacent to y, hence z ∈ V (G1). Therefore, z is adjacent to all the vertices of G2. So x should also
be adjacent to all the vertices of G2. Thus we have G = (G1 + x) ⊲⊳ G2 and any minimum identifying
code of G1 + x together with all vertices of G2 would form an identifying code of G. This proves that
γID(G1 + x) = |V (G1 + x)| − 1. Since G1 + x has less vertices than G, by induction hypothesis, we
have G1 + x ∈ {K1,t | t ≥ 2} ∪ A ∪ (A ⊲⊳ K1) and G 6∼= A1. Since G1 ∈ A, and since x is not adjacent
to a vertex of G1, we should have G1 + x ∈ A but all graphs in A have an even number of vertices
and this is not possible.

Case 3, G − x ∈ A ⊲⊳ K1. Suppose G − x ∼= Ai1 ⊲⊳ Ai2 ⊲⊳ . . . ⊲⊳ Aij ⊲⊳ K1 and let u be the vertex
corresponding to K1.

If x is also adjacent to u, then u is a universal vertex of G and G − u is also twin-free. In this case we
apply the induction on G− u: by Proposition 3, γID(G− u) = |V (G− u)| − 1 and by induction hypothesis
G−u ∈ {K1,t | t ≥ 2}∪A∪ (A ⊲⊳ K1). But if G−u ∈ {K1,t | t ≥ 2}∪ (A ⊲⊳ K1), there will be two universal
vertices, and therefore twins. Thus G− u ∈ A and G ∈ A ⊲⊳ K1.

We now assume x is not adjacent to u and we repeat the argument with G− u if it is twin-free. In this
case if G− u ∈ {K1,t | t ≥ 2} ∪ A, we apply Case 1 or Case 2. If G− u ∈ A ⊲⊳ K1 with u′ being the vertex
of K1, then u and u′ induce an isomorphic copy of A1 and G ∈ A.

If G − u is not twin-free then, by Lemma 5, x must be one of the twin vertices. Let x′ be its twin and
suppose x′ ∈ V (Ai1 ) with V (Ai1) = {z1, z2, . . . , z2k}. Without loss of generality we may assume x′ = zl with
l ≤ k. If l ≥ 2, then we claim C = V (G) \ {zl, z2k} is an identifying code of G which is a contradiction. To
prove our claim notice first that vertices of Ai2 ⊲⊳ · · · ⊲⊳ Aij are already identified from each other and from
the other vertices. Now each pair of vertices of Ai1 is separated by a vertex in V (Ai1 )∩C except zl+k−1 and
zl+k which are separated by x. The vertex x is also separated from all the other vertices by u. It remains
to show that u is separated from vertices of Ai1 . It is separated from vertices in {z1, . . . , zl+k−1} by x and
from {zk+1, . . . , z2k} by z1 (l ≥ 2). Thus x′ = x1 and now it is easy to see that the subgraph induced by
V (Ai1 ), u and x is isomorphic to Ai1+1 and, therefore, G ∼= Ai1+1 ⊲⊳ Ai2 ⊲⊳ . . . ⊲⊳ Aij .

Since every graph in {K1,t | t ≥ 2} ∪ A ∪ (A ⊲⊳ K1) has maximum degree n− 2, we have:

Corollary 15. Let G be a twin-free connected graph on n ≥ 3 vertices and maximum degree ∆ ≤ n − 3.
Then γID(G) ≤ n− 2.

4. Infinite graphs

It is shown in [8] that Theorem 1 does not have a direct extension to the family of infinite graphs. In
other words, there are nontrivial examples of twin-free infinite graphs requiring the whole vertex set for any
identifying code. The basic example of such infinite graphs, originally defined in [8], is given below. In this
section, we classify all such infinite graphs. This strengthens a theorem of [12], which claims that there are
no such infinite graphs in which all vertices have finite degrees.

Definition 16. Let X = {. . . , x−1, x0, x1, . . .} and Y = {. . . , y−1, y0, y1, . . .}. A∞ = (X ∪Y,E) is the graph
on X ∪ Y having edge set E = {xixj | i 6= j} ∪ {yiyj | i 6= j} ∪ {xiyj | i < j}.

6
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...
x−2 x−1 x0 x1 x2 ...

...
y−2 y−1 y0 y1 y2

...

Infinite clique on X

Infinite clique on Y

Figure 2: The graph A∞ which needs all its vertices for any identifying code

See Figure 2 for an illustration.
It is shown in [8] that the only separating set of A∞ is V (A∞). One should note that the graph induced

by {y1, y2, . . . , yk, x1, x2 . . . , xk} is isomorphic to the graph Ak.
Before introducing our theorem let us see again why every separating set of A∞ needs the whole vertex

set: for every i, xi and xi+1 are only separated by yi+1, while yi and yi+1 are separated only by xi.
This property would still hold if we add a new vertex which is adjacent either to all vertices in X

(similarly in Y ) or to none. This leads to the following family:
Let H be a finite or infinite simple graph with a perfect matching ρ, that is a mapping x → ρ(x) of V (H)

to itself such that ρ2(x) = x and xρ(x) is an edge of H . We define Ψ(H, ρ) to be the graph built as follows:

for every vertex x of H we assign Φ(x) = {. . . x−1, x0, x1, . . .}. The vertex set of Ψ(H, ρ) is
⋃

x∈V (H)

Φ(x). For

each edge xρ(x) of H we build a copy of A∞ on Φ(x) ∪ Φ(ρ(x)) and for every other edge xy of H we join
every vertex in Φ(x) to every vertex in Φ(y). An example of such construction is illustrated in Figure 3.

x1

y1

y2

x2

y3

x3

H and ρ = {x1y1, x2y2, x3y3}

Ψ
−→

A∞

Y1

X1

A∞

Y3

X3

⊲⊳⊲⊳

A∞

X2

Y2

Figure 3: Construction of Ψ(H, ρ) from (H, ρ)

We now have:

Proposition 17. For every simple, finite or infinite, graph H with a perfect matching ρ, the graph Ψ(H, ρ)
can only be identified with V (Ψ(H, ρ)).
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Proof. Let Ax be the copy of A∞ which corresponds to the edge xρ(x). Then for every vertex y in
V (Ψ(H, ρ)) \ V (Ax), either y is connected to every vertex in Ax or to neither of them. Thus to separate
vertices in Ax, we need all the vertices of Ax. Since x is arbitrary, we need all the vertices in V (Ψ(H, ρ)) in
any separating set.

In the next theorem we prove that every such extremal connected infinite graph is Ψ(H, ρ) for some
connected finite or infinite graph H together with a matching ρ.

Theorem 18. Let G be an infinite connected graph. Then a proper subset C of V (G) identifies all pairs of
vertices of G unless G = Ψ(H, ρ) for some finite or infinite graph H together with a perfect matching ρ.

Proof. We already have seen that if G ∼= Ψ(H, ρ), then the only identifying code of G is V (G). To prove
the converse suppose G − v has a pair of twin vertices for every vertex v of G. It is enough to show that
every vertex v of G belongs to a unique induced subgraph Av of G isomorphic to A∞ and that if a vertex
not in Av is adjacent to a vertex in the X (respectively, Y ) part of Av then it is adjacent to all the vertices
of the X (respectively, Y ).

Let x1 be a vertex of G. The subgraph G − x1 has a pair of twins, let y1 and y2 be one such pair.
Assume, without loss of generality, that x1 is adjacent to y2 and not to y1. By Lemma 5, x1 must be one
of the vertices of a pair of twins in G − y1. Let the other be x2. Now consider the subgraph G − y1. This
subgraph must have a pair of twins and x1 must be one of them. Let x0 be the other one.

Continuing this process in both directions (with negative and positive indices) we build our Ax1

∼= A∞

as a subgraph of G. Since each consecutive pair of vertices in X ⊂ Ax1
is separated only by a vertex in

Y ⊂ Ax1
, every pair of vertices in X are twins in G− Y . Thus each vertex not in Ax1

, either is adjacent to
all the vertices in X or to none of them. Similarly, every vertex in Ax1

, either is adjacent to all the vertices
in Y or to none. Hence Ax1

is unique. This proves the theorem.

5. Bounding γID(G) by n and ∆

In this section, we introduce new upper bounds on parameter γID in terms of both the order and the
maximum degree of graph, thus extending a result of [12].

We define A+
∞ to be the subgraph of A∞ induced by the vertices of positive indices in X and in Y . The

following lemma, which is a strengthening of Theorem 1, has been attributed to N. Bertrand [2]. We give
an independent proof as [2] is not accessible.

Lemma 19 ([2]). If G is a twin-free graph (infinite or not) not containing A+
∞ as an induced subgraph, then

for every vertex x of G, there is a vertex y ∈ B1(x) such that G− y is twin-free.

Proof. By contradiction, suppose that x1 is a vertex that fails the statement of the lemma. Then G−x1 has
a pair of twin vertices. We name them y1 and y2. Without loss of generality we assume that x1 is adjacent to
y2 but not to y1. Now, in G−y2 we must have another pair u, u′ of twin vertices. By Lemma 5, x1 ∈ {u, u′},
we name the other element x2 (x2 ∈ B1(x1)). Note that the subgraph induced on x1, x2, y1, y2 is isomorphic
to A2. We prove by induction that A+

∞ is an induced subgraph of G, thus obtaining a contradiction.
To this end suppose Ak on {y1, . . . yk, x1, . . . , xk} is already built such that xk−1, xk are twins in G− yk

and yk−1, yk are twins in G−xk−1. Then xk ∈ B1(x1). Consider G−xk. There must be a pair of twins and,
by Lemma 5, yk must be one of them. Let yk+1 be the other one. Since yk and yk+1 are twins in G− xk,
then yk+1 is adjacent to x1, . . . , xk and y1, . . . , yk, in particular yk+1 ∈ B1(x1). Now, there must be a pair
of twins in G − yk+1 and again by Lemma 5 one of them must be xk, let the other one be xk+1. Since xk

and xk+1 are twins in G − yk+1, then xk+1 is adjacent to x1, . . . , xk and not adjacent to y1, . . . , yk. Thus
the graph induced on {y1, . . . , yk+1, x1, . . . , xk+1} is isomorphic to Ak+1 with the property that xk,xk+1 are
twins in G− yk+1 and yk,yk+1 are twins in G− xk. Since this process does not end, we find that A+

∞ is an
induced subgraph of G.

It was conjectured in [10] that:
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Conjecture 20 ([10]). For every connected twin-free graph G of maximum degree ∆ ≥ 3, we have γID(G) ≤
⌈

|V (G)| − |V (G)|
∆(G)

⌉

.

In support of this conjecture, we prove the following weaker upper bound on the size of a minimum
identifying code of a twin-free graph. We note that a similar bound is proved in [10].

Theorem 21. Let G be a connected, twin-free graph on n vertices and of maximum degree ∆. Then
γID(G) ≤ n(1− ∆−2

∆(∆−1)5−2 ) = n− n
Θ(∆5) .

Proof. First, we note that if I is a maximal 6-independent set, then |I| ≥ n(∆−2)
∆(∆−1)5−2 . This is true because

|B5(x)| ≤
∆(∆−1)5−2

∆−2 for every vertex x. Now, let I be a 6-independent set. For each vertex x ∈ I let f(x)
be the vertex found using Lemma 19 and f(I) = {f(x) | x ∈ I}. Since I is a 6-independent set, f(I) is a
4-independent set of G and |f(I)| = |I|. Now, by Lemma 7, we know that C = V (G) \ f(I) is an identifying
code of G. The bound is now obtained by taking any maximal 6-independent set I.

It is easy to observe that if G is a regular twin-free graph, then V (G)−x is an identifying code for every
vertex x of G. Thus the result of theorem 21 can be slightly improved for regular graphs as follows:

Theorem 22. Let G be a connected ∆-regular twin-free graph on n vertices.
Then γID(G) ≤ n(1− 1

1+∆−∆2+∆3 ) = n− n
Θ(∆3) .

Proof. We note that a 4-independent set I of size at least n
1+∆−∆2+∆3 can be found because |B3(x)| ≤

∆(∆−1)3−2
∆−2 = 1 + ∆ −∆2 +∆3. Now, G − x is twin-free for every vertex x of I (because G is regular), so

by Lemma 7, V (G) − I is an identifying code of G.

It is proved in [12] that in any nontrivial infinite twin-free graph G whose vertices are all of finite degree,
there exists a vertex x such that V (G) \ {x} is an identifying code of G. Using Lemma 19 and similar to
the proof of Theorem 21, we can strengthen their result as follows:

Theorem 23. Let G be a connected infinite twin-free graph whose vertices all have finite degree. Then there
exists an infinite set of vertices I ⊆ V (G), such that V (G) \ I is an identifying code of G.

6. General r-identifying codes

To identify the class of graphs with γID

r (G) = n − 1 one needs to find the r-roots of the graphs in
{K1,t | t ≥ 2}} ∪ A ∪ (A ⊲⊳ K1). The general problem of finding the r-root of a graph H is an NP-hard
problem [16] and it does not seem to be an easy task in this particular case either.

If s divides k − 1 and r = k−1
s

, then the graph G = P s
2k is one of the r-roots of Ak. It is easy to see

that, in most cases, one can remove many edges of G and still have Gr ∼= Ak. The difficulty of the problem
is that an r-root of Ak is not necessarily a subgraph of P s

2k. An example of such a 2-root of A5 is given in
Figure 4.

1 2 3 4 5 6 7 8 9 10

Figure 4: A 2-root of A5 which is not a subgraph of P 2

10

For the case of infinite graphs, we note that there exists a 2-root of A∞. This graph is defined as follows:
it has the same vertex set X ∪ Y as A∞ and the same edges between X and Y , but no edges within X or
Y . However, we do not know whether there exist other roots of graphs described in Theorem 18.

We should also note that a (3r + 1)-independent set in Gr is a 4-independent set in G. Thus we have
the following general form of Lemma 7, Theorem 21 and Theorem 23:
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Lemma 24. Let G be a connected graph on n vertices such that Gr is twin-free. Let I be a (3r + 1)-
independent set of G such that for every vertex v of I the set V (G)\{v} is an r-identifying code of G. Then
C = V (G) \ I is an r-identifying code of G.

Theorem 25. Let G be a connected graph on n vertices and of maximum degree ∆ such that Gr is twin-free.
Then γID

r (G) ≤ n(1− ∆−2
∆(∆−1)5r−2 ) = n− n

Θ(∆5r) .

Theorem 26. Let G be a connected infinite graph whose vertices are of finite degree such that Gr is twin-
free. Then there exists an infinite set of vertices I ⊆ V (G), such that V (G) \ I is an r-identifying code of
G.

7. Remarks

We conclude our paper by some remarks on related works.
Remark 1 The following two questions were posed in [18]:

1. Do there exist k-regular graphs G of order n with γID(G) = n− 1 for k < n− 2?

2. Do there exist graphs G of odd order n and maximum degree ∆ < n− 1 with γID(G) = n− 1?

As a corollary of Theorem 14, we can now answer these questions in the negative. Indeed, for the first
question, if G is a k-regular (k ≥ 2) graph of order n with γID(G) = n − 1 then G is the join of k disjoint
copies of A1. For the second question, noting that each graph in A has an even order, we conclude that if
a graph G on an odd number, n, of vertices has γID(G) = n− 1, then G ∈ {K1,t | t ≥ 2} ∪ (A ⊲⊳ K1) and,
therefore ∆(G) = n− 1.

Remark 2 Given a graph G = (V,E) the 1-ball membership graph of G is defined to be the bipartite
graph G∗ = (I ∪A,E∗) where I = V (G), A = {B1(x) | x ∈ V (G)} and E∗ = {{u,B1(v)} | u ∈ B1(v), u, v ∈
V (G)}. It is not hard to see that the problem of finding identifying codes in G is equivalent to the one of
finding discriminating codes in G∗. But since not every bipartite graph is a 1-ball membership graph, the
latter contains the former properly. It is a rephrasing of Bondy’s theorem [1], that every bipartite graph
(I ∪ A,E) has a discriminating code of size at most |I|. The class of bipartite graphs (I ∪ A,E) in which
any discriminating code has size at least |I| are classified in [5]. They further asked for the classification of
bipartite graphs in which every discriminating code needs at least |I| − 1 vertices of A. In Theorem 14 we
answered this question for those bipartite graphs that are isomorphic to a 1-ball membership of a graph.
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