Comparisons between (and discussions on)	
 * MTT-based semantics	
Formal semantics in Modern Type Theories (MTTs)	
 Montague semantics	
 Formal semantics in simple type theory	
They are in the same spirit, but	

 Brief introduction to MTT-based semant Discuss Subtyping – why needed and how (cf, Ashe Rich type structures in MTTs for "meaning" 	
 Rich type structures in MTTs for "meaning 	1
assembly" in formal semantics (cf, Retore)	:()

. Formal semantics based on MTTs		
* Mo	odern Type Theories: examples	
	Predicative type theories	
	Martin-Löf's type theory, where propositions and types are identified	
*	Impredicative type theories	
	* Prop	
	 ♦ Impredicative universe of logical propositions (cf, t in simple TT) ♦ Internal totality (a type, and can hence form types, eq Table→Prop, Man →Prop) 	
	 ECC/UTT (Luo, implemented in Lego/Plastic) 	
	 pCIC (implemented in Coq/Matita) 	
*	Cf, Copper's talk	
•• MT	FT = Logic + Types	

	e theory (Montague semantic
 Base types ("single- 	
 Composite types: e, 	
Modern type theori	es
 Many types of entit Table, Man, Human, 	
↔ Besides →-types, m	nany other types/type constructions

Formal sema	antics based on MTTs
Sentences	as propositions
🔹 [A man v	valks] : Prop
Common r	nouns as <u>types</u>
♦ [man], [l	book], [table] : Type (fine-grained)
Verbs as p	predicates over "meaningful" domains
[shout]:	[human]->Prop
Note: "M	leaninglessness" v.s. "falsity" (eg, "A table shouts.")
Adjectives	as predicates
 [handsor 	me]:[man]→Prop
 [handsor 	me man]? (see later)

Inte	rpretations of CNs: Types v.s. Predicates
*(Common nouns, interpreted as
	 predicates in the Montague semantics
	 types in the MTT-based semantics
•••	man"
	In MG, man : e→t
	$↔$ [handsome man] = λx :e. man(x) & handsome(x) : e→t
	 In MTTs, Man : Type
	$ [handsome man] = \sum x: Man. Handsome(x) : Type $
🔅]	mplications include:
	 Issue of compatibility with subtyping

II. Subtyping: Needs in Linguistic Sen	antics	
Subtyping in linguistic semantics		
 Work by Asher, Pustejovsky, 		
 Linguistic subtypes: Phy, Info, Event 		
Subtyping is also needed for MTT-	based	sem
* Eq,		
[shout] : [human]→Prop		
[John shouts] = [shout](j) : Prop, for j : [mail [mail]	n] ???	
But this is ill-typed! ([man] is not [human])		
♦ We need [man] ≤ [human]		

$y \rightarrow t$) \rightarrow (Phy $\rightarrow t$), similar problem (x) & [book](x) ?	em]
$a_{avv}(x) & [book](x) $	
pawl(x) & [hook](x)	
	???
e well-typed, we need	
e opposite is)!	
nterpreted as types, things	work a
	e opposite is)! nterpreted as types, things

Subtyping in MTT-based semantics	
 Simple example 	
\Rightarrow [heavy book] = Σx :[book]. [heavy](x)	
♦ [heavy](x) is well-typed because [book] \leq Phy.	
Copredication with dot-types (Asher, Pustejovsky) "John picked up and mastered the book."	
[pick up]: [human]—Phy—Prop	
≤ [man]→Phy•Info→Prop	
≤ [man]→[book]→Prop	
[master] : [human]→Info→Prop	
≤ [man]→Phy•Info→Prop	
≤ [man]→[book]→Prop	
January 2013	10

	cive subtyping: adequate for MTTs
۲ı	raditional "subsumptive subtyping"
	Subsumption rule
	Inadequate for MTTs: eg, canonicity fails
* C	percive subtyping
•	History: developed for proof development & program verification
	Adequate for MTTs
	Conservative, in fact, definitional extension
	(Soloviev & Luo 2002, Luo & Soloviev & Xue 2013)

	guistic coercions
÷	Coercions in coercive subtying
	 Role in formalisation of coercions in linguistics
	* Supports most of linguistic coercions
	 cf, Nicholas' talk and (Asher & Luo in SuB17)
•	Dependent types in coercion semantics
	 Previously, we only applied coercive subtyping to cases with non-dependent types.
	* Dependent types provide a useful mechanism for semantics
	 (Example later)

III. Rich type structure in MTTs	
MG is based on simple type theory, which has a structure.	s few
type structures MTTs has rich type structures (as well as log	ic)
 Types for "meaning assembly" (cf, Retore) 	
 We explain some by examples of semantic interpre	etations:
C-types for modified Chis Universes (eg, collection of CNs; interpretation of adverbs) Dependent types in coercion semantics	
 Disjoint union types for some non-subsective adjectives 	
January 2013	

Y	pes in MTTs: summary
*	Propositional types
•	Inductive types
	Nat, AxB, A+B, List(A), …
÷	Dependent types
	* Σx:A.B(x) (intuitively, { (a,b) a : A & b : B(a) })
	\Rightarrow Πx:A.B(x) (intuitively, { f : A→ $\cup_{a \in A}$ B(a) a : A & b : B(a) }
*	Universes
	 A universe is a type of (some other) types

Σ-types (also called "α	dependent sums")
 ∑x:A.B(x) consists of (Note that B(x) depends 	a,b) such that a : A and b : B(a) s on objects x of type A
Modified CNs as ∑-typ	es (Ranta)
* "handsome man"	
[man]: Type	
[handsome](x) : Prop 1	or x : [man]
	:[man]. [handsome](x)

11.2.	Universes
	universe U is a type consisting of a collection of pes – each object of U is a type.
🛠 E>	ample:
*	CN: the universe of types that interpret CNs, including modified CNs.
•	Universe CN is very useful: eg,
	 ♦ Type-lifting from A to (A→Prop)→Prop (Partee et al) ♦ What is the range of A² Answer: A : CN. ♦ Coercions A ≤_{cab}(A→Prop)→Prop, where c: (A:CN)A→((A→Prop)→Prop) is defined as c(A,a,P) = P(a).
	Semantics of adverbs in MTTs (next page)

rie	dicate-modifying adverbs
*	Montague semantics:
	◊ [quickly] : (e→t)→(e→t)
	John walked quickly] = [quickly]([walk], j) : t
*	How to do this in MTTs?
	 Problem: We have many types that interpret CNs (Table, Man, Animated,), not a single e.
	Solution:
	☆ [quickly] : ∏A:CN. (A→Prop)→(A→Prop)
	[John walked quickly] = [quickly](Animated, [walk], j) : Prop, where [walk] : Animated→Prop.
	Remark: the above type of [quickly] is both polymorphic and dependent.

III.3. Dependent types
 Example in (Asher & Luo 2013): using dependent types in coercion semantics (32) JIII just started War and Peace, which Tolstoy finished in 1820. But that won't last because she never finishes long novels. Simple scoping restrictions (eg, local coercions) are not enough. Use dependent types (types of "start" etc – see next page):
start(j, wp) & finish(t, wp) & $\neg last(j, wp)$ & $\forall lb : (\Sigma b: Book.long(b)). finish(j, \pi_1(lb))$
 January 2013 18

For example, for	or the above sentences (32), instead of <i>Event</i> , we may consider the family of type:
	$Evt: Human \rightarrow Type;$
	any h : Human, the dependent type $Evt(h)$ is the type of events conducted by h sume that the verbs start etc have the following types:
	start, finish, last : Πh : Human. (Evt(h) \rightarrow Prop) read, write : Πh : Human. (Book \rightarrow Evt(h))
Furthermore, w	e can consider the following coercions, ¹⁵ for any $h : Human$,
	$Book <_{c(h)} Evt(h),$
where the coerd	tion $c(h)$ is the function from $Book$ to $Evt(h)$ defined as follows: for any $b : Book$
	$c(h,b) = \begin{cases} write(h,b) & \text{if } h \text{ wrote } b, \\ read(h,b) & \text{otherwise.} \end{cases}$

V L	Disjoint union types A+B
	 Intuitively, disjoint union of A and B
🏶 P	Privative Adjectives (eg, fake)
	Partee 2010: Privative Adjectives: Subsective plus Coercion
	 Interpreted subsectively together with 'type shifting' or 'type coercion' of the modified CNs.
	ightarrow This can be represented by disjoint union types (next page)

Example 1.1 Consider th	ne following types:			
• G _R : the type of (real) guns			
• G_F : the type of faked	l guns			
• $G = G_R + G_F$, the d	isjoin union type (of real of	r faked gun	ıs)
• $G = G_R + G_F$, the d We declare the following co		-	• •	ns)
		elations:		ıs)
	oercive subtyping r	elations:		ıs,
	oercive subtyping r	elations:		us)

									~
		1111							
With these types, one can ery g : G,	n define, for	example	, real_	gun, fe	ike_gun	$: G \rightarrow P$	rop so	that,	for
cry y . G,	real_gun	a(a) iff	$\neg fake$	_aun(a)					
d furthermore, because of	-			- (-,					
a jurinermore, because of	saorypring, v	ve nave,	<i>j01 T</i> : '	G _R and	, j . GF,				
real_g	gun(r) = Tr	ue and	real.	gun(f)	= False				
Then the following inter	roretations of	an he air	en wh	ere r :	G and f	$\cdot G_{T}$			
Then, the following inter	-	can be giv	ven, wh	ere x :	G and f	$: G_F:$			
Then, the following inter • [[x is a real gun]] = re	-	can be giv	ven, wh	ere x :	G and f	$: G_F:$			
	$al_gun(x)$		ven, wh	ere x :	G and f	: G _F :			
• $\llbracket x \text{ is a real } gun \rrbracket = re$	$al_gun(x)$		ven, wh	ere x :	G and f	: G _F :			
• $\llbracket x \text{ is a real } gun \rrbracket = re$	$al_gun(x)$		ven, wh	ere x :	G and f	: G _F :			
• $\llbracket x \text{ is a real } gun \rrbracket = re$	$al_gun(x)$		ven, wh	ere x :	G and f	: G _F :			
• $\llbracket x \text{ is a real } gun \rrbracket = re$	$al_gun(x)$		ven, wh	ere x :	G and f	: G _F :			
• $\llbracket x \text{ is a real } gun \rrbracket = re$	$al_gun(x)$		ven, wh	ere x : ·	G and f	: G _F :			
• $\llbracket x \text{ is a real } gun \rrbracket = re$	$al_gun(x)$		ven, wh	ere x :	G and f	: <i>G_F</i> :			

🛠 Log	gical semantics
*	Traditional MG: model-theoretic semantics
	MTTs have been developed in proof theory.
*	Proof-theoretic semantics for NLs?
	 Existing work by Francez & Dyckhoff, not quite the same as Ranta's cours.
🄹 Mo	del theory for MTTs
*	Recent, ongoing research on "univalent models" of MTTs
	(cf, Voevodsky's Univalent Axiom)
	Does this lead to a general model theory for MTTs?

		headigad	-	 -	 -	 	-	uq aa	-		-
											_
											+
											1
											T
January 2013									2	4	1