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Abstract. The papers in this collection are all devoted to single theme: logic and
its applications in computational linguistics. They share many themes, goals and
techniques, and any editorial classification is bound to highlight some connec-
tions at the expense of other. Nonetheless, we have found it useful to divide these
papers (somewhat arbitrarily) into the following four categories: logical seman-
tics of natural language, grammar and logic, mathematics with linguistic
motivations, and computational perspectives. In this introduction, we use this
four-way classification as a guide to the papers, and, more generally, to the re-
search agenda that underlies them. We hope that the reader will find it a useful
starting point to the collection.

1 Logical semantics of natural language

Logical semantics of natural language is a diverse field that draws on many disciplines,
including philosophical and mathematical logic, linguistics, computer science, and ar-
tificial intelligence. Probably the best way to get a detailed overview is to consult the
many excellent survey articles in [19]; this Handbook is likely to be the standard ref-
erence for work on logic in linguistics for some time to come. In the space of a short
introduction like this, it is difficult to give an accurate impression of such a diverse
area; nonetheless, by approaching the subject historically, we can at least hope to give a
sense of the general direction the field is taking, and indicate how the articles on logical
semantics to be found in this collection fit in with recent developments.

Modern logic begins with the work of Frege, and so does logical semantics. His
celebrated Begriffsschrift [50] was not only one of the first formal treatments of quanti-
fied logic, it also discussed the structure of natural language quite explicitly. Moreover,
Frege’s work inspired others to attempt explicit logical treatments of natural language
semantics: Carnap [25] and Reichenbach [98] are important (and still widely refer-
enced) examples. Nonetheless, in spite of such impressive precedents, it is usual to
regard the work of Montague as the starting point of the truly modern phase of formal
semantics. Why is this?

Montague was a highly original thinker, and his three seminal articles on natural
language semantics (English as a formal language, The proper treatment of quantifica-
tion in ordinary English, and Universal Grammar, all in [116]) synthesise the best of



what had gone before (namely, the possible worlds semantics of Carnap [25] and Kripke
[72], together with the higher order logic of Church [41]) with a potent new idea: se-
mantic construction need not be a hit-or-miss affair that relies on intuition. Precise —
and indeed, reasonably straightforward — algorithms can be given which translate in-
teresting chunks of natural language into logical formalisms. Moreover (as Montague
proved in a very general way in Universal Grammar) if the translation procedure obeys
certain natural rules, the semantics of the logical formalism induces the desired seman-
tics on the natural language input. From the perspective of the 1990s it can be difficult
to appreciate how revolutionary Montague’s vision was — but this is largely because
his insights are now a standard part of every working semanticist’s toolkit. To be sure,
semanticists rarely work with Montague’s type theory any more, and Montague himself
might well have been surprised by the wide range of semantic issues now addressed
using logical methods. Nonetheless, the vision that drives modern logical semantics is
essentially Montague’s: it is possible to model an important part of natural language
semantics using logical tools, and the construction of semantic representations is algo-
rithmic.

Montague’s work appeared in the late 1960s and the early 1970s. The 1970s were,
by and large, a period during which his ideas were assimilated by the linguistic com-
munity. Thanks largely to the efforts of Partee (like [92]), Montague’s logical methods
(which linguists found strange and new, and often intimidating) slowly gained accep-
tance. During this period, Montague’s ideas were extended to cover a wider range of lin-
guistic phenomena; the investigations into the temporal semantics of natural language
recorded in [45] by Dowty are a nice example of such work.

If the key themes of the 1970s were “assimilation” and “development” the key
theme of the 1980s was “diversity”. For a start, two new approaches to logical semantics
were developed: Situation Semantics of Barwise and others [15] and Discourse Repre-
sentation Theory of Kamp and others [68,60,69]. Like Montague semantics, Situation
Semantics offered a model theoretic perspective on natural language semantics, but it
changed the ground rules in seemingly radical ways. For a start, whereas Montague’s
logic was total (that is, every statement had to be either true or false, and not both,
at every possible pair of possible worlds and times), Barwise and Perry took seriously
the idea that real situations were often “small”, partially specified, chunks of reality.
Accordingly, it seemed appropriate to drop the assumption that every sentence had to
be either true or false in every situation — hence situation semantics naturally leads to
the use of partial logics. Furthermore, stipulating the conditions under which sentences
were true was no longer to be the central explanatory idea in semantics. Rather, mean-
ing was to be viewed as a relation between situations, a relation that emerged from the
interplay of complex constraints.

The agenda set by Discourse Representation Theory (DRT) seemed, at first, less
revolutionary. Essentially, DRT proposed using an intermediate level of representation
in a more essential way than Montague’s work did. Although Montague made use of
translations into an intermediate level of logical representation, in his work this level is
a convenience that is, in principle, eliminable. Kamp and Heim showed that by mak-
ing heavier — indeed, intrinsic — use of this intermediate level, interesting treatments
could be given of temporal phenomena, and a number of troublesome problems involv-



ing quantifier scopes could be resolved. This may sound reasonably innocuous — but
actually DRT has proved to be far more genuinely subversive to received semantic ideas
than Situation Semantics. For a start, the idea that an intermediate level of representa-
tion is intrinsic to meaning is both interesting and highly controversial philosophically.
Moreover, from DRT stems one of key words of modern semantics: dynamics. Thinking
of semantics in terms of DRT leads fairly directly to an interesting — and very differ-
ent — conception of meaning: meanings as functions which update contexts with new
information. This essentially computational metaphor has developed into an important
perspective for looking at semantics; [58] by Groenendijk and Stokhof is a prominent
example of such work.

While DRT and Situation Semantics are perhaps the two key new ideas that emerged
in the 1980s, a number of other themes emerged then that continue to play an important
role. For a start, linguists slowly became aware of other traditions in logical semantics
(the game theoretic approach instigated by Hintikka is perhaps the most important ex-
ample, see [105]). Moreover, perhaps for the first time, semantic investigations began
feeding important ideas and questions back into logic itself; the development of gener-
alised quantifier theory by Barwise and Cooper or van Benthem [14,16] is an important
example of this.

So where do we stand in the 1990s? Here the key theme seems to be “integration”.
At the logical level, there seems to be an emerging consensus that what is needed are
frameworks in which the insights gathered in previous work can be combined in a re-
vealing way. For example, work in Situation Semantics and DRT has made clear that
ideas such as partiality and dynamism are important — but are there well-behaved logi-
cal systems which capture such ideas? Some interesting answers are emerging here: for
example, Muskens in [90] shows how the insights concerning partiality and situations
can be integrated into classical type theories that are simpler (and far more elegant)
than Montague’s, while Ranta in [97] shows that constructive type theory offer a uni-
form logical setting for exploring many current problems in logical semantics, including
those raised by DRT. A second theme that is emerging is the use of inference as a tool
for solving semantic puzzles. This is a natural step to take: one of the advantage of do-
ing semantics in well understood formalisms (such as various kinds of type theory) is
that the inference mechanisms these formalisms possess offer plausible mechanisms for
modeling further phenomena. A third — and crucial — theme is how best to link all this
semantical and logical work with the new and sophisticated approaches to syntax (and
phonology) that have been developed over the fifteen or so years. The syntax-semantics
interface is likely to be a focus of research in coming years.

Bearing these general remarks in mind, let’s consider the individual contributions.

Sloppy identity by Claire GARDENT, exploits for semantic purposes the existence of
Higher Order Unification (HOU) algorithms for classical type theory. The key linguistic
idea is that a wide variety of sloppy interpretation phenomena can be seen as arising
from a semantic constraint on parallel structures. As the author shows, by making use
of HOU — essentially a powerful pattern-matching mechanism — a precise theory of
sloppy interpretation can be given for such parallel constructions. Among other things,
this theory captures the interaction of sloppy/strict ambiguity with quantification and
binding.



The papers Vagueness and type theory, by Pascal BOLDINI, and A natural language
explanation for formal proofs, by Yann COSCOY, are both based on constructive type
theory, but they use it for very different purposes. Boldini’s paper gives an analysis
of certain so-called vague predicates, such as “small”, which, in addition to creating
a problem for logical semantics, have played a role in the philosophical controversy
between constructive and classical logic. Coscoy’s paper is associated with one of the
major computer applications of constructive type theory, proof editors. It explains an
algorithm that produces natural language texts to express formal proofs, and discusses
some stylistic principles to improve the texts. Coscoy’s algorithm is actually available
as a part of the latest release of the proof editor Coq [12].

The paper A belief-centered treatment of pragmatic presupposition, by Lucia MA-
NARA and Anne DE ROECK, addresses the problem of linguistic presupposition —
the phenomenon that the meaningfulness of a sentence may demand the truth of some
proposition. For instance, “John’s wife is away” presupposes that John has a wife. This
problem is approached in terms of the logical calculus of property theory, which pro-
vides new ideas for the interference of beliefs with the phenomenon of presupposition.

Whereas the previous four papers essentially exploit in various ways the fact that
formal semantics can be done in standard logical systems (be it classical type theory,
constructive type theory, or property theory) Language understanding: a procedural
perspective, Ruth KEMPSON, Wilfried MEYER VIOL and Dov GABBAY is an attempt to
view the syntax-semantics interface from a logical perspective. In particular, the authors
show how an incremental parser can be formulated using the idea of labeled deductions,
aided by a modal logic of finite trees. They argue that this blend of ideas can deal with
crossover phenomena in a way that eludes other frameworks.

2 Grammar and Logic

The history of the relations between Grammar and Logic is as old as these two fields: we
say they descend from the Ancient Greeks or the first grammar of sanskrit by Pān. ini.
It is worth noticing in particular that Ancient Indian linguists around the 4th century
B.C. had the idea of a concise system of rules (or sutras) for describing the formation
of words and sentences. Some commentators [108] have argued that such a requirement
of economy in the description is the departure point for a scientific study of language.
In modern times, we can also refer to the Port-Royal School (17th century) for which
it was natural to put a bridge between Grammar and Logic just because the language
was supposed to express the logical thought. The reader interested in these aspects of
the history of linguistics is referred to, for instance [89,102].

The generativism of the 20th century often compares itself to these traditions, and
indeed many features of the Chomskyan program were already met in the ideas of
17th century philosophers as well as those of Indian grammarians, as explained by
Chomsky in [35]. The most important similarity is definitely the concept of a finite
device for generating an infinite set of sentences and the notion of an explicit procedure
for generating grammatical strings. The main difference lies in the tools existing for
expressing such ideas at different times. When Chomsky began his research on natural
language in the fifties, mathematical logic was sufficiently developed to provide the



concepts of automaton and formal grammar — see e.g. [83] for a survey. As firstly a
logician, Chomsky himself helped to develop these concepts and we are indebted to
him for a hierarchy of formal languages [30,31] and the relationship between linguistic
theory and formal language theory [32,33,40]. Of course the notion of rule had no
logical status by itself, even if it was possible to make a link with the notion of sequent
in the Gentzen style presentation of logic, and grammatical symbols were conceived as
atomic symbols. So, the link with traditional logic was rather poor.

But some decades before, Polish logicians, the first being Lesniewski, inspired by
Husserl’s philosophy, had explored the theory of semantic categories — see for instance
[29] for an history. This had led Ajduckiewicz [8] to the idea of a very simple algorithm
to check well-formedness. This algorithm for what Ajduckiewicz called “syntactic con-
nectivity” was based on a “quasi-arithmetic notation for categories”. For instance, an
intransitive verb was represented by the fractional notation

�� which expresses that in
presence of a word of category � , trivial rules of simplification lead to an expression of
category � . This was the starting point for categorial grammar.

After that, Bar-Hillel added the notion of directionality [10,11], thus making a dis-
tinction between � � � and � � � and considered that an expression could belong to several
categories as explained in [29]. In 1958, Lambek [74] published his seminal Mathemat-
ics of Sentence Structure, that presents for the first time an authentic calculus of syntac-
tic categories, defined by a system of axioms and rules and in which it was possible to
deduce the set of categories to which an expression belonged. This calculus of syntactic
types was presented as a sequent calculus and this logical formulation helped in clearly
establishing important properties, and in particular the cut-elimination and sub-formula
property (see next section).

In the eighties, while logicians studied the mathematical properties of the Lambek
calculus (see next section), linguists became interested in categorial systems. Bach [9],
Ades and Steedman [7], Dowty [46] recognized their expressive power for linguistic
description essentially because of their direct account of the notion of valency. Steed-
man [112], Szabolcsi [114] and Desclés [43] (the latter influenced by a neighbouring
school born in the former USSR and led by Shaumyan, that gave rise to the so-called
Applicative Grammar [107]) used the relations existing between categorial grammars
and combinators for expressing reflexivisation, binding, gapping, coordination of non
constituents and long-distance dependencies.

Moortgat thoroughly explored the linguistic description capacities of the Lambek
calculus in his book [85] and in [86], resetting in a proper way Montagovian semantics
by means of the Curry-Howard isomorphism and also giving a description of the rela-
tion between the prosodic and the syntactic algebras. From then on, linguistic entities
have been considered as triples � Syn : Phon : Sem � where Syn is the syntactic part,
Phon the phonetic part and Sem the semantic part of the sign.

At the end of the eighties Girard introduced Linear Logic [53], and the Lambek
calculus was recognised as a fragment of non-commutative linear logic [2,103], thus
putting a strong connection between syntax (categorial grammar) and logic (proof the-
ory). Indeed Linear Logic provides a neat logical system to describe resource consump-
tion, and, through the unary connectives called “exponentials” or “modalities”, neatly



relates the Lambek calculus to the classical and intuitionistic logics which are used for
semantical descriptions.

But the pure Lambek calculus has many limitations, and several investigations were
made in the direction of an enrichment with new connectives. These new connectives,
which are different ways of combining grammatical resources, are mainly modalities,
called “structural”, and they have the same rules as those we can find in Modal Logic,
or they behave like exponentials in Linear Logic [3]. These modalities were originally
introduced by the Edinburgh School [13] and strongly used by Hepple [62] (island
constraints) and by Morrill. The latter in [88] gives an impressive account of linguistic
phenomena, including extraction, coordination, pied-piping, prosodic phrasing. . . in a
grammar expressed in purely logical types.

During the same time, Ranta [97] gave another viewpoint on grammar and seman-
tics based on the Constructive Type Theory of Martin-Löf [82]. Regarding the syntax,
this approach is in certain respects more traditional than the afore mentioned advances
because it relies on [30]; but is very powerful on the semantic (and even pragmatic) side
because of its use of dependent types, allowing a proper treatment of dynamic binding
(e.g. Geach sentences) and thus going beyond Montague semantics.

Finally, Moortgat in [87] provides the widest survey of Categorial Type Logics,
including the syntax-semantics interface, multimodality, polymorphism, hybrid archi-
tectures and categorial parsing.

Chomsky’s program was continued in parallel but we have no room here to trace
back the long history of Generativism — one should refer to the main books by Chom-
sky [30,34–39] or to the introductive textbook [96]. What appears as a curious fact in
the end of the nineties is a real convergence between the generativist trend and the cate-
gorial one (see below). Of course, on the theoretical side, Pentus [93] demonstrated that
Lambek grammars have the same generative power as Context-Free grammars, and this
is an important link. But it is only a formal result. From a historical point of view, we
are presently witnessing a deep change in Generative Grammar: in the recent minimalist
program [39], traditional levels (the deep level and the surface level) and even the X-bar
theory are abandoned in favour of a unique system of Generalized Transformations very
similar in their spirit to the reduction rules of Categorial Grammar.

Two main points concerning the so-called Minimalist Program [39] will be stressed
here: one concerning the derivational conception advocated by Chomsky himself and
the other the notion of Resource Consumption as it appears in the operations of Feature
Checking for which the Generalized Transformation Move is required. The notion of
a derivational theory is preferred to that of a representational one for many reasons
and notably because it allows a better characterization of local phenomena like the
satisfaction of the HMC constraint cf. [39, pp. 49–50]. Moreover, it is coherent with the
general conception of Minimalism for which it is necessary to avoid all syntactic entities
(like rules, representations, representation-levels and so on) which are not absolutely
necessary for linguistic description and explanation. In a derivational perspective, only
the derivation itself counts as a “representation” for an analysis of a sentence.

In this volume, Derivational minimalism by Edward STABLER proposes an attrac-
tive formalism to take such a view into account. His formalism provides a formulation
for structure-buildingoperations like Merge and Move, and he shows how to express the



fact that such operations are “feature-driven”. That means that Move, for instance, is ap-
plied only when necessary in order to check a feature, weak or strong. The weak/strong
distinction is used to describe an opposition between overt and covert movements in
syntax and it provides a parameter for distinguishing various families of natural lan-
guages (like SVO, VSO. . . ). This paper also provides formal examples which are of
great interest if we wish to compare this formalism to others like for instance Tree Ad-
joining Grammars.

Tree Adjoining Grammars (TAGs), introduced in [65] are present among the papers
published here, and for a recent survey on TAGs one should refer to [67,1] for example.
They, too, provide an appealing formalism, firstly because it is mathematically a very
elegant one and secondly because it has often been explored and its properties regarding
complexity and generative power are well-known [66]. One point is mainly dealt with
in this volume: its connection with the derivational paradigm. As we said previously,
there is a strong connection between Chomsky’s Minimalism and Categorial Grammar,
and Categorial Grammar could be a good candidate as a framework for Minimalism:
for instance, a Generalized Transformation like Merge is very close to Cancellation
Schemes, so familiar to the categorial grammarian. Nevertheless categorial grammar
lacks some important notions which are easily described in (Lexicalized) TAGs like
“the notion of an extended domain of locality (EDL)” and the consequent “factoring of
recursion from the domain of dependencies (FRD)”. Thus, exploring the link between
the derivational paradigm (expressed by Linear Logic or Lambek calculus) and TAGs,
is also useful for bringing together, as intuition suggests, the derivational paradigm and
the minimalist program.

The paper Tree adjoining grammars in non-commutative linear logic by V. Michele
ABRUSCI, Christophe FOUQUERÉ and Jacqueline VAUZEILLES presents a
derivational conception of TAGs. It uses the concept of proof net which is an essen-
tial ingredient of the proof theory of linear logic. The encoding of substitution and
adjunction, mainly uses the cut-rule restricted to atomic formulae. Let us recall that
the cut-rule is a very particular rule in every logical system with “good properties”: it
does not provide more theorems than the system does without it, but is a simple way to
combine two proofs into one. When using the cut-rule for the TAG purpose, trees are
considered as provable sequents in the Non-Commutative Intuitionistic Linear Logic
(N-ILL or Lambek calculus) and adjunction as two occurrences of the cut-rule. They
thus obtain a complete translation of TAG-grammars into the Lambek calculus — but
the notion of grammar they use is not the one defined by Lambek.

The paper Partial proof trees, resource sensitive logics and syntactic constraints by
Aravind K. JOSHI and Seth KULICK tries to incorporate LTAG notions like ELD and
FRD into the categorial framework, thus attempting to produce a new synthesis between
LTAG and Categorial Grammar. By doing so, they switch from a notion where lexical
entries are formulae (as in all the traditions of Categorial Grammar) towards a concep-
tion according to which they are pieces of proofs (so-called “Partial Proof-Trees”). The
standard operations of substitutionand adjoining in TAG are therefore replaced by oper-
ations on Partial Proofs, namely: application, stretching and interpolation. As its name
indicates, stretching consists in duplicating a node in a Partial Proof Tree and inserting a
new proof between the two instances. In interpolation, the place is reserved for a proof



insertion between two nodes generated at the lexical stage. Exactly as in TAG-trees, de-
pendencies can be registered as local relations in initial Proof-Trees. The authors also
discuss the differences and proximities between their approach in the setting of Partial
Proof Trees and the Proof Net approach, as they call the formalisms advocated in the
paper by Abrusci et al., as well as by Lecomte and Retoré [78,79].

The latter viewpoint is reflected in another paper Pomset logic and variants in
natural languages by Irene SCHENA. The author proposes another view on combin-
ing proofs by means of Pomset Logic, an extension of Linear Logic made by Retoré
[99,101]. The main difference with Abrusci et al. resides in the fact that the cut-rule is
used between general formulae, and also in the essential use of the cut-elimination al-
gorithm. This formalism is particularly relevant for word-order phenomena: when Cuts
are eliminated, new proof nets are produced, which can be read as giving the correct
order of words in a sentence. The author goes deeper in the description of linguistic
phenomena by means of this logic: she proposes analysis for topicalized sentences. Ac-
cording to her views, there are initial proof nets which are not associated with lexical
entries but used in order to properly connect these entries. We can compare these mod-
ules to non-lexical signs (functional ones, associated with I and C) in the Chomskyan
theory.

As we can see, these grammatical formalisms share many features: they all try to
combine, in a way or another, elementary trees or their representations in some logic.
Here Linear Logic is very often referred to because it gives the best account of Re-
source Consumption. When a feature, or a node, is used for some purpose (like check-
ing agreement or case) it can no longer be used. The interest of Linear Logic is to
keep encapsulated such “economy principles” so that we do not have to formulate them
separately.

The paper Inessential features by Marcus KRACHT present another way, mainly
model theoretical, of formulating trees in Logic. Indeed, the first order theory of trees
may be axiomatised in Modal Logic. This is what this paper does, in a way similar to
[20] or [57]. But Kracht’s objective is not only to provide the best way for “talking about
trees”, it is to go very deep into the key insights of the Minimalist approach, asking
when a feature is eliminable from a grammar. This is a way of taking very seriously the
intentions of the Chomskyan program. If Chomsky abandons the levels of X-bar theory,
it is because he intuitively thinks that such distinctions can be recovered if necessary
from the remaining parts of the description. Moreover, another important point shared
by all these approaches is lexicalism. The question arises of determining exactly what
is the price to pay for reaching radical lexicalism. A true lexical theory is one where the
computational system only treats features which are introduced at the lexical stage and
need no other feature (like BAR, SLASH...). This is the objective that researchers like
Stabler and others pursue, but a theoretical study is needed for defining in a precise way
the conditions in which some “syntactic” features can be eliminated. Kracht’s paper is
an answer to this question.



3 Mathematics with linguistic motivations

As often the interplay between two areas of research open new research directions for
both. Let us quote here a few interesting purely mathematical/logical questions moti-
vated by linguistic considerations, related to the articles in this volume.

3.1 Formal language theory

The best known connection is certainly Formal Language Theory1 which as stated
above was initiated in the late fifties with the works of Chomsky [31,32] for natural
language syntax.

Firstly this was considered as a part of logic, because of its relation to the theory
of computability. Nevertheless it soon developed as an extended independent theory,
with its own techniques, the major reason being its success for the study of program-
ming languages and compilation. Therefore it is impossible to give a short account of
such a wide research field; however the basic notions are by now part of the standard
curriculum in computer science. For more advanced notions, the reader is referred to,
for instance [104], which is a collection of comprehensive survey papers, the first one
being quite introductive and general [83]. Now, let us just select a few topics relevant
to this volume.

The classical grammars of Chomsky have been extended to grammars for trees.
From a linguistic point of view this clearly makes sense: one is not only interested in
the sentences, but also in their analysis into constituents or phrases. Thus tree grammars
have been developed, in several ways: for instance one can consider regular trees, the
ones generated by a tree automaton (see [52] for a survey), or the trees generated by
substitution and adjunction from a finite set of trees (Tree Adjoining Grammars) (see
[67] for a survey).

Formal grammars, either for strings or trees, describe a language, by means of a
finite set of rules, and are especially useful from an algorithmic perspective. Indeed, a
natural aim is to use them to actually parse a sentence. This leads to two mathematical
questions. Can we decide whether a sentence is generated by a grammar of a given
kind? If so, what is the complexity of the algorithm? For instance, one may decide in
less than � � � 	 
 whether an � -word sentence of � words is generated by a context free
grammars.

Unfortunately, this kind of grammar is not sufficient for some syntactical phenom-
ena, and does not handle non purely syntactic information, like morphology (for agree-
ment), semantics etc. Therefore in the eighties, inspired by the Logic Programming
formulation of standard grammars, unification grammars have been introduced: LFG
[70,106,1], GPSG [51,106,117,1] and HPSG [95,1]. One mathematical problem put for-
ward by these formalisms is the question of the decidability: in general it is undecidable

1 Given that this conference took place in 1996 in France, let us seize the opportunity to salute
the memory of Marcel-Paul Schützenberger (1920-1996). He had been a pioneer in formal lan-
guage theory, not to mention his other numerous scientific interests. As an example of his work
in Formal Language theory, let us just mention the famous paper he wrote with N. Chomsky
on context-free languages [40]. He undoubtedly is one of the founders of the French school of
Theoretical Computer Science, with M. Nivat and L. Nolin.



whether a sentence may be generated from such a grammar, and this is rather worrying
from a computational point of view. Therefore, their logical counterpart, namely feature
logics, have been studied [63,28,71] and tools for handling them have been developed
like ALE [26], CUF [44], and TFS [119], a major challenge being to isolate a fam-
ily of logics which would be sufficient for natural language purposes but, nevertheless
decidable — and in polynomial time if possible!

But one can also consider less computational descriptions of the set of all languages
generated by a particular kind of grammar, to prove properties of families of languages.
These declarative descriptions may be either algebraic or model theoretic. The most
familiar examples of algebraic description certainly are the regular expressions written
with concatenation, union and the Kleene star operation, which describe regular lan-
guages. Model theoretic description are probably less well-known, and for a survey the
reader is referred to [115]. As an example, a regular language may be viewed as the
models of a formula of weak second order logic with a single successor symbol. These
descriptive formulations, and the mathematical properties they allow to prove, are es-
pecially useful for characterising the expressiveness of the grammars, that is to say the
set of languages they correspond to. This has an underlying theoretical linguistic moti-
vation: which class of languages is actually needed for natural language syntax?

Let us give a famous example which stresses the linguistic relevance of non-algo-
rithmic results in formal language theory. It has been formally shown that Swiss Ger-
man is not context-free [109] not by the use of parsing considerations but by the use
of algebraic results: the closure of context-free languages under homomorphisms and
intersection with regular languages. 2

In this volume several papers address the aforementioned questions:
Strict LT2 : Regular :: Local : Recognizable by James ROGERS is devoted to tree

languages as models of second order formulae. It defines a class of logic formulae such
that the tree analyses of context free grammars are exactly the sets definable in this class.
Furthermore, this formula explicitly expresses how much smaller this class is than the
class of trees generated by tree automata. Incidentally, the research agenda underlying
this paper has much in common with that of Inessential features by Marcus Kracht.
Roger’s LT2 is yet another paper for “talking about trees”. However, like Kracht, Rogers
is interested in far more than simply developing a good descriptive format. The links
this papers forges with formal language theory means that his language can be used
to analyse the strength of various linguistic theories such as Government and Binding
theory or Generalised Phrase Structure Grammar.

Semilinearity as a syntactic invariant by Jens MICHAELIS and Marcus KRACHT

shows that actually some natural language, namely Old Georgian is not mildly context
sensitive, because of its very particular genitive construction. The argument consists in
showing that it is not semi-linear, a property which mildly context sensitive languages
have.

A family of decidable logics which supports HPSG-style set and list constructions by
Stephen J. HEGNER addresses the important topic of how to define a family of decidable
feature logics which could support at least some of the key constructs of HPSG. In

2 This is a strictly stronger result than showing that there is no sensible (when correctly bracket-
ing the constituents) context-free grammar generating this language.



HPSG, sets and lists occur in fundamental ways, for example in filler-gap constructions
or in the value of the feature COMP-DTRS (subcategorization principle). Hegner’s
paper brings “the only work to treat multisets and lists uniformly within a decidable
feature-structure framework”. Decidability is proven by mapping the logic into a sorted
first-order logic, and then using variants of decidability results in that context.

3.2 Lambek calculus and non-commutative (linear) logic

Even if we take into account all the strange formal systems that have been proposed
as “logics”, one observes that logics are rarely non-commutative. The calculus intro-
duced by Lambek in the late fifties [74–76] is the notable exception which undoubt-
edly deserves to be called a logic. It was introduced as a logical formalisation of the
categorial grammars of Adjukiewicz and Bar-Hillel [10,11] together with the related
calculi. Indeed, this calculus, a plain propositional logic defined by a sequent calculus
à la Gentzen, admits cut-elimination and the subformula property, truth value seman-
tics, denotational semantics, and is fairly simple: seven rules, one non-commutative
conjunction and two implications (because of the non-commutativity).

The properties of this calculus, once rather isolated from other calculi, are now eas-
ily observed and formulated in the linear logic framework. Linear logic was introduced
ten years ago by Girard [53] — see [54] for a recent survey and [118] for a textbook.
Although it was conceived rather as a logic of computation and communication than
for linguistic purposes, it explains the various aspects of logical calculi with restricted
structural rules and their relations to the standard intuitionistic or classical logic, via the
unary connectives called “exponentials” or “modalities”. In this setting one observes
the following properties of the Lambek calculus:

– There are no rules of contraction or weakening (aka thinning). This is responsible
for the logic to be linear, in other words: the formulae may be viewed as resources,
that may not be duplicated or erased. This property of linearity seems actually nec-
essary to have a non-commutative logic, although this probably cannot be proved,
because determining what a logic is certainly leads to Byzantine discussions.

– It is a multiplicative calculus, that is to say: in each rule with two premises, the
context of the conclusion sequent is obtained by adding the contexts of the two
premise sequents. This means that the calculus describes how the resources are
combined. The other possibility would be to ask for both contexts to be equal, so
the introduced connective would correspond to choice operators, called additive
connectives.

– It is an intuitionistic calculus, that is to say there is a single formula on the right
hand side. Intuitively, this means that a proof of a sequent may be viewed as a
function that takes resources of the types/formulae of the left hand side and returns
an object of the type of the conclusion.

– It is a non-commutative calculus. That is to say there is no exchange rule and thus
no way to prove the commutativity of the product. This intuitively correspond to
the fact that we handle an ordered list of resources.

– Finally, a proof should not contain any sequent without hypothesis. This is a lin-
guistic requirement rather than a logical one: without this extra requirement, the



types of the empty sequence would be all Lambek tautologies, and thus one would
not be able to specify that a word requires on its left or right a constituent whose
type is a tautology. Fundamentally, it does not affect the logical properties of the
calculus, except that, as shown by Zielonka in [120], the Lambek calculus is not
finitely axiomatisable (in a Hilbert-style formulation) — see also [80].

This is a typical example of an elegant mathematical structure introduced for lin-
guistic motivations. Indeed, this calculus was introduced as a lexicalised grammar,
which logically formalises the Adjuckiewicz Bar-Hillel categorial grammars. The lexi-
con assigns a formula or type to each word; then analysing a phrase of type � consists
in proving � from the lists of the types of the words in the phrase. In this parsing-
as-deduction perspective, the subformula property, deduced from the cut-elimination
theorem [74–76] is then highly important: it restricts the search space to a finite number
of formulae, so this property makes the parsing obviously decidable and guides each
step. Another important proof theoretical property of the Lambek calculus is interpola-
tion, established by Roorda in [103], which states that whenever an implication holds
there always exists an intermediate formula, whose only atomic formulae are common
to the antecedent and consequent. This enables, as shown in this volume, a transforma-
tion from one bracketing of a sentence to another, e.g. from the syntagmatic one to the
intonational one.

Now how does it relates to linear logic? What is the benefit of such a connection?
What mathematical properties, preferably with a linguistic meaning, does it enable us to
prove? The basic relation between the Lambek calculus and linear logic is that the Lam-
bek calculus is exactly the multiplicative fragment of non-commutative linear logic.
From this fact, the study of the Lambek calculus can benefit from the richer framework
of linear logic — see e.g. [100] for a survey.

One of the advantages of linear logic is that it makes explicit the relationship of
this calculus to intuitionistic and classical logics. Thus, the simply typed lambda calcu-
lus is easily viewed as an extension of the Lambek calculus. This way the semantical
representation à la Montague, that is to say a simply typed lambda term, i.e. a proof
in intuitionistic logic, has the same structure as a syntactical analysis, i.e. a proof in
the Lambek calculus. This enables a particularly simple interface between syntax and
semantics [85,88,27], which is especially clear in the proof net syntax [59].

This proof net syntax is precisely another convenient tool provided by linear logic
[53,118,54,73]. It is a very compact and elegant notation for proofs in these logical cal-
culi, which avoids, for instance, the so-called spurious ambiguities of categorial gram-
mar analyses [100]. The structure of a proof net is very much like a family of trees, and
thus one is able to picture in this setting numerous phenomena studied in the standard
linguistic formalisms, usually described by trees; on the logical side they allow easy
proofs, of cut-elimination, interpolation etc. As an example of a linguistic outcome, a
recent paper [64] shows that using this kind of syntax allows one to measure the un-
derstanding complexity of center-embedded relatives. Finally, proof nets also enable
the definition of efficient heuristics for parsing. This is especially useful because one
exciting open question is the complexity of the parsing, or provability in the Lambek
calculus.



Another advantage of having a purely logical calculus is that one may use semantics
to prove properties of the calculus. Actually, there are basically two kinds of semantics
that may be used: the usual truth valued semantics, for which the completeness theorem
holds, and the denotational semantics, i.e., the semantics of proofs.

Denotational semantics was introduced by Scott for the semantics of programming
languages and lambda calculus, see e.g. [113], and applies to typed lambda calculus and
linear logic see e.g. [56,53,118]. Such a semantics associates a “space” � �  � � to each
formula  , and an object of the space � �  � � correspond to a proof up to cut-elimination.
The linguistic meaning of this kind of semantics is yet unclear. Nevertheless in [4] it is
used to show the difference between the two analyses of the classical example “every
man loves a woman”. It should be observed that, as opposed to the general case, the
multiplicative fragment of linear logic, quite sufficient for syntactic analysis, admits a
complete denotational semantics [81]; this should help in finding a linguistic meaning
for denotational semantics.

Truth value semantics, for which logic completeness results usually hold, have been
substantially studied in categorial grammar, mainly by Buskowski and van Benthem,
[22,23,16–18,24]. For instance, they established completeness with regards to rela-
tional interpretations and with regards to monoidal interpretations see e.g. the section
1 of Martin Emms’paper in this volume. These latter models are very similar to the
so-called “phase semantics” of linear logic [53,2,118]. Roughly speaking, these models
interpret a formula � as the sets of all phrases of type � , i.e. as a part of a monoid.
Somehow these structures formalise the philosophical notion of a category and, techni-
cally, they lead to substantial results. The most famous concerns the relation between
Lambek grammars and formal language theory. Given a context-free grammar, it is a
simple exercise to find a Lambek grammar, even in a small fragment of the Lambek
calculus, that generates the same language. Nevertheless it was conjectured by Chom-
sky in 1963 [33, p. 413] that Lambek grammars defined by the whole Lambek calculus
should not go beyond context free languages. After several unsuccessful attempts, this
was indeed proved by Pentus in 1993 [93], and the argument extensively uses this kind
of models, together with a refinement of the interpolation theorem for the Lambek cal-
culus established in [103].

This result confirmed the intuition: Lambek calculus is too restrictive to describe a
linguistically sensible class of formal languages, as also shown in [77] and one should
look for extensions of the Lambek calculus — still in a neat logical framework, if pos-
sible. A first direction, quite standard from a logical point of view, is to consider frag-
ments of the second order Lambek calculus, i.e. to allow type variable and quantification
over them, as developed by Emms [47–49]. For instance the conjunction “and” should
received the type � � � � � � � � . This way one goes beyond context-free languages [47],
but still can remain within a decidable fragment of second order Lambek calculus [48]
— indeed, unrestricted second order Lambek calculus is undecidable [49].

Linear logic provides newer ways to extend the Lambek calculus. Indeed, linear
logic allows for several conceptions of a non-commutative logic. One way is to extend
the Lambek calculus to the corresponding classical calculus defined by Abrusci [2,5].
This leads, in particular, to a mathematical definition for the philosophical notion of
a syntactic category [6]. Another way, introduced by Retoré [99,101], is to enrich the



commutative calculus with a non-commutative self-dual connective. Then one has to
generalise slightly the notion of a Lambek grammar: the lexicon should associate partial
proofs (partial proof nets in fact) to the words, and parsing consists in combining them
into a complete proof — as done by Lecomte and Retoré in [78,79] and pursued by
Schena in this volume.

Models for polymorphic Lambek calculus by Martin EMMS reviews truth value
models for Lambek calculus, and then defines a notion of model for the second or-
der Lambek calculus. Then the author establishes that this semantics is complete with
respect to second order Lambek calculus.

Representation theorems for residuated groupoids by Marek SZCZERBA shows that
every residuated groupoid — this is a rather general notion of model for the non-
associative Lambek calculus — is isomorphic to a submodel of a residuated groupoid
of a particular shape, namely the ones defined, as in phase semantics, by the powerset
of a groupoid (groupoids are also known as “magmas”).

Connected set of types and categorial consequence by Jacek MARCINIEC studies
how one can infer from parsing data the type of each word, i.e. define a categorial
grammar which generates these sentences and which is as simple as possible. This is
done by studying unification over sets of types.

Constructing different phonological bracketings from a proof net by Denis BECHET

and Philippe DE GROOTE gives a nice proof of the interpolation lemma for the Lambek
calculus in the proof net syntax. This enables to move from a proof net of the Lambek
calculus corresponding to one bracketing (e.g. the syntagmatic one) to another (e.g. the
intonational one).

Generation as deduction on labelled proof nets by Josep M. MERENCIANO and
Glyn V. MORRILL is devoted to generation in the framework of the Lambek calculus.
It provides an algorithm for reconstructing the syntactic analysis of a sentence out of a
Montague-likesemantics — in the restricted case where there is no logical constant. The
algorithm consists in constructing a proof net, i.e. a syntactic analysis in the Lambek
calculus; the construction is guided by lambda terms which label the proof net: lambda
terms must unify when they are “linked” by axioms of the proof net.

4 Computational perspectives

There is now a long tradition of using Logic Programming for implementing parsers
(and generators) for natural language. In fact, Logic Programming itself originates in
Natural Language Processing considerations. Prolog was created in 1972 by Colmer-
auer and Kowalski by merging Robinson’s notion of unification in Automated Theorem
Proving with the insights provided by Colmerauer’s previous Q-systems, a program-
ming language which he had designed for use in Machine Translation [42].

At the beginning of the eighties, the Unification Grammar paradigm [110,106,84],
strongly connected to Logic Programming [94], gained more and more popularity in
Computational Linguistics circles. One of the key advantages of such formalisms was
their ability to free the grammar writer from an explicit management of many cases of
"transversal information flow", that is, correlations between different points of analysis
(the best known instance being agreement handling).



Since then, the fields of Computational Linguistics and Logic Programming have
continued to gain insights from each other, in developments such as feature logics [71],
resource accounting, constraint processing [61], concurrency, higher-order constructs
(functionals).

Constraint logic programming for computational linguistics by Frieder STOLZEN-
BURG, Stephan HÖHNE, Ulrich KOCH and Martin VOLK describes a system that uses
Constraint Logic Programming to deal efficiently with typed feature-structures, with
applications to finite set operations, variable-free negation and linear precedence con-
straints.

Quantitative constraint logic programming for weighted grammar applications by
Stefan RIEZLER explains how a system of weights can be combined with a certain class
of constraint languages and provides a formal semantics for the resulting programs.
They show how the use of weights permits the parser to select the most “plausible”
analysis in case of ambiguity, using a fuzzy logic notion of plausibility, rather than a
probabilistic one.

The development of realistic parsers involves specific needs such as the efficient
management of large sets of complex linguistic objects (for instance a lexicon). The au-
tomatic deduction of classificatory systems from linguistic theories by Paul John KING

and Kirl Ivanov SIMOV explains how a classification system for typed feature structures
may be derived automatically from a set of linguistic constraints about these structures
(in a formalism related to HPSG). The resulting classification system is implemented as
a tree whose each branch may be seen as a sequence of elementary queries and expected
answers that are used to discriminate the objects to be classified.

In the continuation of his previous works to enrich Logic Programming, the ex-
tended abstract Linear logic as logic programming by Dale MILLER shows that the
whole of linear logic can be considered as a logic programming language, which en-
ables both high-order programming (functionals) and concurrency primitives. The au-
thor mentions several existing applications of this language in Computer Science and
indicates its applicability to Filler-Gap Dependency Parsers, illustrating once more the
practical relevance of linear logic to Computational Linguistics.
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