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Vijay-Shanker et al. (1987) note that many interest-
ing linguistic formalisms can be thought of as having
essentially context-free structure, but operating over ob-
jects richer than simple strings (sequences of strings,
trees, or graphs). They introduce linear context-free
rewriting systems (LCFRS’s, see also Weir (1988)) as a
unifying framework for superficially different such for-
malisms (like (multi component) tree adjoining gram-
mars, head grammars, and categorial grammars). Later
work (Michaelis, 1998) has added minimalist grammars
(MGs, see (Stabler, 1997)) to this list. Recently, Fülöp
et al. (2004) have introduced multiple bottom-up tree
transducers (mbutt), which can be thought of as offer-
ing a transductive perspective on LCFRSs. The trans-
ductive perspective allows us to view a grammar in one
of these grammar formalisms as defining both a set of
well-formed derivations, and functions which interpret
these derivations as the derived structures (trees, strings,
or meanings) they are derivations of. Being explicit about
the structure of the derivation, and divorcing it from the
construction of the object so derived has two main advan-
tages. First, we may entertain and study the effects of
modifications to the structure of the derivational process,
such as insisting that a particular operation apply only in
case there is an isomorphic subderivation somewhere in
the same derivation (for example, in deletion under iden-
tity with an antecedent), or other non-local filters on well-
formed derivations, without worrying about the kinds of
data structures that would be required to support such op-
erations in real-time (as in parsers, for example). Sec-
ondly, viewing derivational grammar formalisms in this
way makes particularly salient two loci of language theo-
retic complexity:

1. the set of well-formed derivation structures

2. the transformation from derivation structures to de-
rived structures

Taking this latter perspective, Shieber (2006) shows
that TAGs are exactly characterized in terms of monadic
macro tree transducers simple in both the input and the
parameters (1-MTTsi,sp) (Engelfriet and Vogler, 1985)
acting on a regular tree language (see also Mönnich
(1997)).

Minimalist grammars offer a formal perspective on
some of the core ideas in Chomsky’s minimalist program
(Chomsky, 1995) (various extensions to the core formal-
ism have been proposed and investigated; a variant with
copying was introduced and studied in (Kobele, 2006)).
We show in this paper how, given a minimalist grammar
G, to construct a simple, regular, characterization of its
well formed derivations. Furthermore, given the close
connection between LCFRSs and mbutts, it is straightfor-
ward to construct a linear deterministic mbutt which maps
derivation trees to the structures they are derivations of.
Deterministic mbutts were proven in Fülöp et al. (2004)
to be equivalent to deterministic top-down tree transduc-
ers with regular look-ahead (dTTR), and it was conjec-
tured that adding linearity to the mbutt corresponded to
restricting thedTTR to be finite copying. We prove half
of this conjecture in the appendix: linear deterministic
mbutts (ldmbutt) can be simulated by finite copying de-
terministic top-down tree transducers with regular look-
ahead (dTTR

f c).
1We obtain thus both a bottom-up and

a top-down characterization of the function from mini-
malist derivations to derived trees. The same construc-
tion extends to minimalist grammars with copying sim-
ply by removing the finite copying restriction (dTTR). In
other words, the structure languages generated by mini-
malist grammars with (without) copying are contained in
the output languages of (finite copying) tree homomor-
phisms.

We can immediately conclude that, although the string
languages generated by minimalist grammars properly in-
clude those generated by TAGs,2 the same is not true of

1Michaelis et al. (2001) have provided a different characterization of
the derived trees definable by minimalist grammars (see alsoMorawietz
(2003)). Given a minimalist grammar, they define a regular tree gram-
mar which encodes the operations of an equivalent LCFRS as operation
symbols in a lifted signature. From there, they show that onecan ob-
tain the desired trees using a monadic second order logic transduction,
a MTT simple in the input and the parameters, or a deterministic tree
walking automaton. As we think the derivation tree is an interesting
object in its own right (as per our introductory comments), we prefer to
start from there. Our obtained transducer class is different in non-trivial
ways as well, with MSO and simple MTTs able to define transductions
which dTTR

( f c)s cannot.
2MGs were proven to be equivalent to multiple context-free gram-

mars (Seki et al., 1991) in (Michaelis, 1998; Harkema, 2001;Michaelis,
2001). The variant with copying is equivalent to parallel multiple
context-free grammars (Seki et al., 1991), see (Kobele, 2006). TAGs
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their respective structure languages, as the output lan-
guages of deterministic (finite copying) tree transducers
are incomparable to those of 1-MTTsi,sps (Engelfriet and
Maneth, 2000). An example of a derived TAG tree lan-
guage that is not also generable by an MG is{an(bn(e)) :
n≥ 1} (as monadic languages which are the output of a
regular tree transducer are all recognizable).

Tree transducers can also be used to characterize trans-
formations of trees into non-tree-like structures, such as
graphs, or even arbitrary algebras (Bauderon and Cour-
celle, 1987; Engelfriet, 1994). The idea is to encode ele-
ments of the algebra as trees, and to ‘decode’ the treeτ(t),
for input treet and transducerτ, into the algebraic object
it represents (this is the idea behind the common ‘tree-
to-string’ mappings). For instance, we might interpret
the derived objects not as strings, but rather as partially
ordered multi-sets, as proposed in Pan (2007), which al-
lows for an elegant statement of otherwise quite difficult
to describe (Bobaljik, 1999) word order regularities in
languages like Norwegian. Compositionality, the prin-
ciple that the meaning of an object is determined by the
meanings of its immediate parts and their mode of combi-
nation, is naturally formulated as a transduction mapping
derivation trees to (terms denoting) semantic values. The
compositional semantics for minimalist grammars intro-
duced in Kobele (2006) is naturally expressed in terms of
a transduction of the same type as that mapping deriva-
tions to derived trees (adTTR

( f c)). We present a general
method of synchronizing (in the sense of Shieber (1994))
multiple transductions over the same derivation, showing
as a result that the form-meaning relations definable by
MGs interpreted as per Kobele (2006) can be described
as bimorphisms of typeB(M ,M) (in the terminology of
Shieber (2006)).

The rest of this paper is structured as follows. After
some mathematical preliminaries, we introduce minimal-
ist grammars. We then define the derivation tree lan-
guage of a minimalist grammar, and prove that it is reg-
ular. We then introduce multi bottom-up tree transduc-
ers, and show that one can therewith transform a min-
imalist derivation tree into the derived structure it rep-
resents a derivation of. Finally, bimorphisms are intro-
duced, and the form-meaning relations generable by min-
imalist grammars are shown to be contained within the
bimorphism classB(M ,M ) (M is the set of unrestricted
homomophisms). In the appendix, the linear determin-
istic multi bottom-up tree transducers used in this paper
to establish the above results are shown to be included
in the top-down tree transducers with regular look-ahead
and finite copying, as conjectured by Fülöp et al. (2005).
At the end we include a picture which contains some of
the wealth of information on tree languages generated by
various grammars and devices.

are equivalent to a proper subclass of multiple context-free grammars
(Seki et al., 1991).

9.1 Preliminaries

The set of natural numbers will be denoted byN and[n]
will denote the set{1, . . . ,n} with the convention that[0]
represents the empty set.

Σ∗ is the set of all finite sequences of elements ofΣ.
Σ+ is the set of all non-empty such sequences, andε is the
empty sequence. The length of a sequencew is denoted
|w|, and|ε| = 0. For a non-empty sequenceaw, a∈ Σ is
its head andw its tail.

A ranked alphabetΩ is a finite set (also denotedΩ) to-
gether with a functionrank : Ω → N assigning to each
ω ∈ Ω its rank. The notationΩ(n), for n ∈ N, denotes
the set{ω ∈ Ω : rank(ω) = n} of symbols of rankn.
Given ω ∈ Ω(n), we sometimes writeω(n) to remind us
that rank(ω) = n. The set of trees built on a ranked al-
phabetΩ, notedTΩ, is the smallest set that containsΩ(0)

andω(t1, . . . ,tn) iff for all i ∈ [n], ti ∈ TΩ.

9.2 Minimalist Grammars

An idea common to many grammar formalisms is that
natural languages are resource sensitive, in the sense that
grammatical operations consume resources when applied.
Minimalist grammars implement this idea in terms offea-
tures, which are deleted orcheckedas operations are ap-
plied. Syntactic features come in two varieties:licensing
features andselectionfeatures, which are relevant for the
grammatical operations ofmoveandmergerespectively.
Each feature type has a positive and a negative polarity.
The set of licensing features islic, and forx ∈ lic, +x is
the positive, and-x the negative polarity feature of type
x. The set of selection features issel, and forx∈ sel, =x is
the positive, andx the negative polarity feature of typex.
We assume without loss of generality thatlic andselare
disjoint. F = {+x,-x,=y,y : x∈ lic,y∈ sel} is the set of
all positive and negative polarity features of all types. An
expressionφ = φ0,φ1, . . . ,φn is a finite sequence of pairs
φi = 〈ti , l i〉 of treest and sequences of featuresl .3 The in-
tuition is that the grammatical operations combine trees
in various ways based on the features that are associated
with these trees. Given an alphabetΣ and a symbolε /∈ Σ
we will interpret as the empty string (the setΣ∪{ε} is de-
notedΣε), the tree components of a minimalist expression
have internal nodes labelled with either< or > (indicating
that the head of the tree as a whole is the head of the left
or right subtree respectively), and leaves labelled with ei-
ther t (a ‘trace’) or elements ofΣε. These labels form
a ranked alphabetΩ = {<(2),>(2),t(0)}∪Σε, where each
σ ∈ Σε has rank 0. In lexicalized grammar formalisms
like MGs, the grammatical operations are held constant
across grammars, the locus of variation being confined to
different choices of lexical items. Alexiconis a finite set

3This is the ‘chain-based’ presentation of MGs (Stabler and Keenan,
2003), but with trees, and not strings, as the derived objects. The pos-
sibility of such a representation was first noticed by Michaelis (1998),
who used it to prove the containment of the minimalist languages in the
MCFGs.
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Lex⊂ Σε ×F
+. The grammatical operationsmove and

merge, common to all minimalist grammars, are defined
as per the following. The unary operationmove is de-
fined on an expressionφ0, . . . ,φn just in case the head of
the feature sequence ofφ0 is a positive polarity licens-
ing feature type+x, and there is exactly oneφi the head
of whose sequence is the corresponding negative feature
-x (the requirement thatφi be unique is called the SMC,
and results in an upper bound of|lic|+1 on the length of
useful expressions). The definition ofmove is given in
two cases, as per whether the moving element has exactly
one (move1), or more than one (move2) feature in its fea-
ture sequence. The tree denoted byf (t1,t2) is <(t1,t2) if
t1 ∈ Σε, and is>(t2,t1) otherwise. Forl i non-empty,

move1(〈t0,+xl0〉, . . . ,〈ti ,-x〉, . . . ,φn)

= 〈 f (t0,ti), l0〉, . . . ,φn

move2(〈t0,+xl0〉, . . . ,〈ti ,-xl i〉, . . . ,φn)

= 〈 f (t0,t), l0〉, . . . ,〈ti , l i〉, . . . ,φn

The binary operationmerge is defined on expressions
φ andψ just in case the head of the feature sequence ofφ0

is a positive polarity selection feature=x, and the head of
the feature sequence ofψ0 is the corresponding negative
featurex. As before, we split the definition ofmerge
into two cases, based on whether the feature sequence
of ψ0 contains exactly one (merge1) or more than one
(merge2) feature. Forl ′0 non-empty,

merge1(〈t0,=xl0〉,φ1, . . . ,φm; 〈t ′0,x〉,ψ1, . . . ,ψn)

= 〈 f (t0,t
′
0), l0〉,φ1, . . . ,φm,ψ1, . . . ,ψn

merge2(〈t0,=xl0〉,φ1, . . . ,φm; 〈t ′0,xl ′0〉,ψ1, . . . ,ψn)

= 〈 f (t0,t), l0〉,φ1, . . . ,φm,〈t ′0, l
′
0〉,ψ1, . . . ,ψn

Given an alphabetΣ, a minimalist grammarG over Σ
is given by its set of featuresF, a lexiconLex, and a des-
ignated featurec∈ F (the type of sentences). The expres-
sions generated by a minimalist grammarG = 〈F,Lex,c〉
are those inCL(Lex) =

S

n∈NCLn(Lex), where4

CL0(Lex) = Lex

CLn+1(Lex) = CLn(Lex)

∪{move(φ) : φ ∈CLn(Lex)}

∪{merge(φ,ψ) : φ,ψ ∈CLn(Lex)}

An expressionφ = φ0, . . . ,φn is complete iffn = 0. The
structure languageS(G) = {t : 〈t,c〉 ∈ CL(Lex)} gener-
ated byG is the set of tree components of complete ex-
pressions whose feature sequence component is the des-
ignated featurec.

4It is implicitly assumed that the arguments presented to thegener-
ating functions are restricted to those in their domains.

9.3 Derivations as trees

Given a minimalist grammar overΣ, G = 〈F,Lex,c〉, its
derivation trees are defined to be the terms over the ranked
alphabetΓ = {mrg(2),mv(1)}∪Lex, where the elements
of Lexhave rank 0. A derivation treet ∈ TΓ is a deriva-
tion of an expressionφ just in caseφ = h(t), wherehmaps
lexical items to themselves, andh(mv(t)) = move(h(t))
and h(mrg(t1,t2)) = merge(h(t1),h(t2)). As the func-
tionsmergeandmoveare partial, so ish. We can identify
the set ofconvergent(well-formed) derivation trees with
the domain ofh.

The first question we ask is as to the language theoretic
complexity of the set of well-formed derivation trees of
complete expressions. We will show (by exhibiting the
automaton) that this set is the language accepted by a
bottom-up tree automaton; in other words, a regular tree
language. A bottom-up tree automaton (BA) is a structure
A= 〈Q,Qf ,Σ,δ〉, whereQ is a finite set of states,Qf ⊆ Q
the set of final states,Σ is a ranked alphabet, andδ =
(δσ)σ∈Σ is a family of partial functionsδσ : Qrank(σ) → 2Q

from rank(σ)-tuples of states to sets of states. If for every
σ(n) ∈ Σ, and for everyq1, . . . ,qn ∈Q, |δσ(q1, . . . ,qn)| ≤ 1
thenA is deterministic, and we writeδσ(q1, . . . ,qn) = q
for δσ(q1, . . . ,qn) = {q}. For a termσ(n)(t1, . . . ,tn) ∈ TΣ,
δ(σ(t1, . . . ,tn)) =

S

{δσ(q1, . . . ,qn) : qi ∈ δ(ti)}. A term
t ∈TΣ is accepted byA just in caseδ(t)∩Qf is non-empty.

Theorem 9.3.1. For G = 〈F,Lex,c〉 a minimalist gram-
mar over an alphabetΣ, and for l∈ F

+, the set of con-
vergent derivation trees of complete expressions of type l
is a regular tree language.

Proof. We construct a deterministic bottom up tree au-
tomaton AG = 〈Q,Qf ,Γ,δ〉 which recognizes just the
convergent derivations inTΓ of complete expressions of
type l . Any set accepted by such an automaton is regu-
lar, whence the conclusion. The states of our automaton
will keep track of the featural components of the expres-
sion h(t) that the derivation treet is a derivation of. To
bring out the logical structure of the feature calculus (and
thereby simplify the statement of the transition function),
instead of working with arbitrary sequences of feature se-
quences (the right projection of minimalist expressions)
we represent the features had by an expressionφ as an
n+ 1-ary sequence of feature sequences, withn = |lic|
(recall that the SMC condition onmove ensures that no
expression that is part of a convergent derivation of a
complete expression has more than one subpartφi with
feature sequence beginning-x, for any x ∈ lic). More-
over, an arbitrary but fixed enumeration oflic allows us to
denote licensing feature types with positive integers (thus
+1 denotes a positive polarity feature of the first licensing
feature type), and we require that theith component of our
states, if non-empty, contain a feature sequence beginning
with -i. Formally, forsuf(Lex) := {β : 〈σ,αβ〉 ∈ Lex}
the set of suffixes of lexical feature sequences, we define
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our set of states such that

Q := {〈s0, . . . ,sn〉 : s0, . . . ,sn ∈ suf(Lex) and for

1≤ i ≤ n eithersi = ε or si = -iα}

The set of final statesQf is the singleton{〈l ,ε, . . . ,ε〉}
It remains to describe the action of the transition func-
tion on states. To make the description of the results of
these functions easier, we define the partial binary op-
eration over feature sequences⊕ (‘sum’) which is de-
fined just in case at least one of its arguments isε, and
returns its non-empty argument if one exists, andε oth-
erwise. We extend⊕ to a function which takes a state
q = 〈s0, . . . ,si , . . .〉 and a feature sequences and returnsq
if s= ε and〈s0, . . . ,(si ⊕s), . . .〉 if s= -is′ (otherwise,⊕
is undefined). The transition functionδmv is defined on a
stateq = 〈s0, . . . ,sn〉 just in case the head of the sequence
of features in the initial position of is a positive polarity
licensing feature (+i), the head of the feature sequence in
the ith position is the corresponding negative polarity li-
censing feature (-i), and if the tail of the feature sequence
in the ith position is non-empty and begins with-j, then
the jth position is empty. If defined, the result is identical
to q, except that the matchingith licensing features are
deleted, and the remainder of the feature sequence in the
ith array position is moved to thejth array position if it
begins with-j. Formally,

δmv(〈+is0, . . . ,-isi , . . .〉) = 〈s0, . . . ,ε, . . .〉⊕si

The transition functionδmrg applies to a pair of states just
in case the following three conditions are met. First, the
heads of the initial feature sequence of the two states must
be positive and negative polarity features of the same se-
lection feature type, respectively. Second, whenever a
non-initial feature sequence of the first state is non-empty,
the corresponding feature sequence in the second state
must be empty. Finally, if the tail of the initial feature
sequence of the second state begins with-j, then the
jth position of both states must be empty. If defined,
δmrg(q1,q2) is the state whose initial component is the
tail of the initial component ofq1, whosejth component
is the sum of the tail of the initial component ofq2 with
the jth components of both input states, and whose non-
initial components are the sum of the corresponding non-
initial components inq1 andq2. Formally,

δmrg(〈=fs0, . . . ,si , . . .〉, 〈fs′0, . . . ,s
′
i , . . .〉)

= 〈s0, . . . ,(si ⊕s′i), . . .〉⊕s′0

Finally, for each lexical item〈σ, l〉, δ〈σ,l〉 is the constant
function that outputs the state with initial componentl ,
and all other componentsε. Formally,

δ〈σ,l〉(〈σ, l〉) = 〈l ,ε, . . . ,ε〉

A simple induction on derivation trees proves the cor-
rectness of the automaton. The only slightly tricky bit
stems from the fact that the automaton in effect enforces

the SMC at each step, whereas the minimalist grammars
‘wait’ until a move step. This is harmless as once an
expression is generated which has more than one com-
ponent with the same initial-i feature it can never be
‘rescued’ and turned into a complete expression.

As a special case we obtain

Corollary 9.3.2. For any MG G= 〈F,Lex,c〉, the set
of derivation trees of sentences (complete expressions of
categoryc) is regular.

9.4 Interpreting derivations

The picture of minimalist grammars with which we be-
gan conflates the structure of the feature calculus with the
process of tree assembly. We have seen that by factoring
out the tree-building operations from the syntactic fea-
ture manipulation, we are left with a simple and elegant
system, and that the structure of the feature calculus is
underlyingly regular. We can think of the syntactic cal-
culus as delivering blueprints for building trees. We now
know that these blueprints themselves have a simple reg-
ular structure, but what is left to determine is the com-
plexity of building trees from blueprints.

We will extend the bottom-up automaton from the pre-
vious section (which manipulated sequences of feature
sequences) so as to allow it to build trees. In minimalist
expressionsφ = φ0, . . . ,φm, each treeti is paired with its
syntactic featuressi directly. This makes the order of oc-
currence of theφis irrelevant. In contrast, in our automata,
features are used in the description of states, and thus are
dissociated from their trees. Accordingly, we make the
objects derived during a derivationn+1-ary sequences of
trees over the ranked alphabetΩ = {<(2),>(2),t(0)}∪Σε.
The connection between a tree and its feature sequence
is established by the invariant that theith component of
a state represents the features of theith tree in a se-
quence. There aren2 +2n+1 basic operations onn+1-
ary sequences of trees:m(2), mj

(2), vi
(1), andvi,j

(1), for
1 ≤ i, j ≤ n. These operations form an algebraS over
the carrier setS= {〈t0, . . . ,tn〉 : t0, . . . ,tn ∈ TΩ} of n+ 1-
ary tree sequences. Intuitively, the operations on tree se-
quences are indexed to particular cases of theδmv and
δmrg functions, and derivations in the syntactic calculus
then control tree sequence assembly (as shown in figure
9.1). The operations are defined as per the following,
wheret1 ⊕ t2 is defined iff at least one oft1 andt2 is t,
in which case it returns the other one.

vi(〈t0, . . . ,ti , . . .〉) = 〈 f (t0,ti), . . . ,t, . . .〉

vi,j (〈t0, . . . ,ti , . . . ,t j , . . .〉)

= 〈 f (t0,t), . . . ,t, . . . ,(t j ⊕ ti), . . .〉

m(〈t0, . . . ,ti , . . .〉, 〈t
′
0, . . . ,t

′
i , . . .〉)

= 〈 f (t0,t
′
0), . . . ,(ti ⊕ t ′i ), . . .〉
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operation case ofδmv/δmrg

vi si = ε
vi,j si = -jl
m s′0 = ε
mj s′0 = -jl

Figure 9.1: Operations on tree sequences and the syntactic operations they are associated with

mj (〈t0, . . . ,t j , . . .〉, 〈t
′
0, . . . ,t

′
j , . . .〉)

= 〈 f (t0,t), . . . ,(t j ⊕ t ′j)⊕ t ′0, . . .〉

Each stateq = 〈s0, . . . ,sn〉 is associated with an
n + 1-tuple of trees〈t0, . . . ,tn〉. We would like the
states to be put together in accord with the tran-
sition function δ from the proof of theorem 9.3.1,
and the tuples of trees in accord with the opera-
tions in figure 9.1. Thus, we would like to map
mrg(u,v), whereu is mapped toq(t0, . . . ,tn) and v to
q′(t ′0, . . . ,t

′
n), to δmrg(q,q′)(m(〈t0, . . . ,tn〉, 〈t ′0, . . . ,t

′
n〉))

if the first component ofq′ is of length one, and to
δmrg(q,q′)(mj (〈t0, . . . ,tn〉, 〈t ′0, . . . ,t

′
n〉)) if the tail of the

first component ofq′ begins with-j. This intuitive pic-
ture is very close to the multi bottom-up tree transducer
model introduced in (Fülöp et al., 2004). A multi bottom-
up tree transducer is a tupleM = (Q,Σ,∆, root, f ,R)
where:

1. Q is a ranked alphabet,the states, with Q(0) = /0

2. Σ and∆ are ranked alphabets, respectively theinput
alphabetand theoutput alphabet

3. root is a unary symbol called theroot

4. f is the final ‘state’.Q, Σ∪∆, {root}, and{ f} are
pairwise disjoint sets

5. R is the set ofrules which are of one of the two
forms below, for σ ∈ Σ(n), qk ∈ Q(rk), and tl ∈
T∆({y1,1, . . . ,y1,r1, . . . ,yn,1, . . . ,yn,rn}) and q ∈ Q(n)

andt ∈ T∆(Xn)

σ(q1(y1,1, . . . ,y1,r1), . . . ,qn(yn,1, . . . ,yn,rn))

→ q0(t1, . . . ,tr0)

root(q(x1, . . . ,xn)) → f (t)

An mbutt islinear just in case each of the variables occur
at most oncein at most oneof the output trees. It isde-
terministicjust in case there are no two productions with
the same left hand sides.

Theorem 9.4.1. For every minimalist grammar G=
〈F,Lex,c〉, there is a linear deterministic multi-bottom
up tree transducer MG such that for L(AG) the set
of derivations of complete expressions of categoryc,
MG(L(AG)) = S(G).

Proof. The states ofMG are triples of states from our
bottom-up tree automaton, our tree sequence algebra op-
erations, and a boolean value which encodes the result of

the test for the functionf (whether or not the first tree is a
symbol fromΣε). Each state has the same arity,|lic|+1.
Our rulesR include5

1. for q = δmv(q1), ρ ∈ {vi,vi,j} such that the con-
dition in figure 9.1 is satisfied, and〈t0, . . . ,tn〉 =
ρ(〈y1,1, . . . ,y1,n+1〉),

mv(〈q1,ρ1,b1〉(y1,1, . . . ,y1,n+1))

→ 〈q,ρ,0〉(t0, . . . ,tn)

2. for q = δmrg(q1,q2), ρ ∈ {m,mi} such that the con-
dition in figure 9.1 is satisfied, and〈t0, . . . ,tn〉 =
ρ(〈y1,1, . . . ,y1,n+1〉,〈y2,1, . . . ,y2,n+1〉),

mrg(〈q1,ρ1,b1〉(y1,1, . . . ,y1,n+1),

〈q2,ρ2,b2〉(y2,1, . . . ,y2,n+1))

→ 〈q,ρ,0〉(t0, . . . ,tn)

3. 〈σ, l〉 → 〈q,ρ,1〉(σ,t, . . . ,t) just in case q =
δ〈σ,l〉(〈σ, l〉)

4. root(〈q,ρ,b〉(x1, . . . ,xn+1))→ f (x1) just in caseq=
〈c,ε, . . . ,ε〉

Again, a simple induction on derivation trees suffices to
establish the correctness of the construction.

Given the construction of the ldmbutt in theorem 9.4.1,
it is clear that we could just as well have chosen differ-
ent operations over differentn+ 1 tuples of objects (Ko-
bele (2006) provides an example of such). Additionally,
we can use the very same feature calculus to simultane-
ously control different operations over different algebras.
A synchronization of two dmbuttsM andM′ is a triple
〈M,M′,C〉 whereC ⊆ R× R′ is the control set, which
serves to specify which transitions inM are allowed to be
used with which productions inM′. The relation defined
by such an object is

{〈u,v〉 : ∃t ∈ TΣ.∃c∈C∗. t ⊢π1(c)
M u ∧ t ⊢π2(c)

M′ v}

whereπi is the ith projection function extended over se-
quences in the obvious way,u ⊢aw

M v just in caseu ⊢a
M v′

andv′ ⊢w
M v, andu ⊢a

M v just in casea is a production in
M, u rewrites tov in a single step usinga, anda is applied
to the left-most rewritable node inu.

5The resolution of the operation⊕ in the definition ofρ must be done
by the statesq1 andq2. As an empty component in a state is shadowed
by a trace in a tree sequence, this is merely a notational inconvenience.
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This is (a restriction to a particular transducer type of) a
generalization of the model of synchronous tree adjoining
grammars, as developed by Shieber and Schabes (1990),
and thus can be used, for example, to model the syntax-
semantics interface (Nesson and Shieber, 2006). Shieber
(2006) investigates the complexity of the form-meaning
relationships definable by synchronous TAGs by situat-
ing them within the context of bimorphisms. A bimor-
phism is a tripleB = 〈Φ,L,Ψ〉, whereL is a recognizable
tree language andΦ andΨ are homomorphisms; the re-
lation it defines isL(B) = {〈Φ(t),Ψ(t)〉 : t ∈ L}. Given
classesH1 and H2 of homomorphisms,B(H1,H2) de-
notes the class of bimorphisms〈h1,L,h2〉 wherehi ∈ H i
andL is recognizable. Shieber proves that synchronous
TAGs define exactly those relations definable by bimor-
phisms where the homomorphisms are one state monadic
macro tree transducers simple in the input and parame-
ters.

The following theorem is an easy consequence of a re-
sult in Fülöp et al. (2004).

Theorem 9.4.2. The relation defined by a synchroniza-
tion 〈M,M′,C〉 of dmbutts M and M′ is in the bimorphism
classB(M ,M), whereM is the class of unrestricted ho-
momorphisms. It is in the classB(FC,FC), whereFC is
the class of finite copying homomorphisms, if M and M′

are linear.

Proof. By moving to the expanded alphabetΣ×R×R′,
we can find new dmbuttsM⋆ and M′

⋆ such that the set
{〈M⋆(t),M′

⋆(t)〉 : t ∈ TΣ×R×R′} is the very same relation
as defined by〈M,M′,C〉 (we essentially encode the con-
trol information into the vocabulary itself). By theorem
4.4 in Fülöp et al. (2004), we can find an equivalentdTTR

for any dmbutt. It is well-known that regular look-ahead
and states can be encoded into a regular set of trees (En-
gelfriet, 1977), and therefore for anydTTR T and regular
languageL we can find a homomorphismh and regular
languageLh such thatT(L) = h(Lh). Thus, fromM and
M′ over TΣ, we move toM⋆ andM′

⋆ over TΣ×R×R′ , and
from there we obtainT⋆ and T ′

⋆ , whence we finally ar-
rive at homomorphismsh⋆ andh′⋆. By the result in the
appendix,h⋆ (h′⋆) is finite copying ifM (M′) is linear.

9.5 Conclusion

In light of our transductive characterization of mini-
malist grammars, what seems the core of the minimal-
ist grammar framework is the underlying feature calcu-
lus, and then-tuples of terms that are therewith natu-
rally controllable. The cases of the generating functions
(merge1,merge2,. . . ) that were introduced at the begin-
ning are now revealed to be gerrymanderings of the fea-
ture calculus to support the particular mode of manipulat-
ing expressions qua minimalist trees. Different modes of
expression manipulation, or different choices of expres-
sions to manipulate, might well have drawn different lines

in the sand. This perspective allows us to consider there-
lations that the minimalist feature calculus makes defin-
able. Situating natural langauge formalisms in the con-
text of bimorphisms provides an elegant and principled
way of measuring and comparing their ‘strong genera-
tive capacity’—the kinds of form-meaning relations the
formalism can define. We have seen that all of the rela-
tions definable by synchronous minimalist grammars are
naturally expressible as bimorphisms where the compo-
nent maps are simple tree-to-tree homomorphisms. Our
characterization is still loose. We must leave it for future
work to determine a tighter description of the relations
naturally definable by minimalist grammars.

Appendix

In this appendix we show the inclusion of the relations de-
finable by linear deterministic multi bottom-up tree trans-
ducers in those definable by single use deterministic top-
down tree transducers with regular look-ahead (dTTR

su)
which are known to be equivalent to deterministic top-
down tree transducers with regular look-ahead with finite
copying (dTTR

f c) (Engelfriet and Maneth, 1999). First,
some definitions.

GivenΣ and∆ two ranked alphabets, we defineΣ∪∆ to
be the ranked alphabet such that(Σ∪∆)(n) = Σ(n) ∪∆(n).
A set A is made into a ranked alphabetR(A) such that
R(A)(0) = A andR(A)(k) = /0 whenk > 0. In particular
we writeTΩ(A) for TΩ∪R(A).

We describe tree substitution with a set of indexed in-
put variablesX = {xk : k ∈ N ∧ k > 0} and also a set
of double indexed input variablesY = {yi, j : i ∈ N∧ i >
0∧ j ∈ N∧ j > 0}. The setXn will denote{xk : k ∈ [n]}
and the setYn,〈r1,...,rn〉 will denote{yk,l : k∈ [n]∧ l ∈ [rk]}.
Given t ∈ TΣ(Xn) (respTΣ(Yn,〈r1,...,rn〉)) and for k ∈ [n]
tk ∈ TΣ (resp k ∈ [n], l ∈ [rk] and tk,l ∈ TΣ), we write
t[t1, . . . ,tn] (respt[t1,[r1], . . . ,tn,[rn]]) for the result of replac-
ing every occurrence ofxk (respyk,l ) in t by tk (resptk,l )
for all k ∈ [n] (respk ∈ [n] andl ∈ [rk]). Givenσ ∈ Σ(rk)

and a family(tk,l )l∈[rk], we abbreviateσ(tk,1, . . . ,tk,rk) to
σ(tk,[rk]) (a particular case is whentk,l = yk,l ). We also
assumez to be a variable that is neither inX nor inY and
we use to define contexts. A context ofTΣ is an element
C of TΣ({z}) such thatz occurs exactly once inC. Given
a t we writeC[t] the tree obtained by replacing the occur-
rence ofz in C by t. Contexts will alway be written using
capitalC with indicies, exponents, primes, . . .

Definition 9.5.1. A top-down tree transducer with reg-
ular look-ahead (TTR for short) is a tuple M=
(Q,Σ,∆,q0,R,P,δ) where

1. Q is a ranked alphabet ofstatessuch that Qk = /0 for
every k∈ N\{1}.

2. Σ and∆ are ranked alphabets, repectively, theinput
alphabetand theoutput alphabet. Q andΣ∪∆ are
disjoint.
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3. q0 is an element of Q, theinitial state.

4. (P,Σ,δ) is a deterministic BA (the final states are un-
necessary and will be suppressed).

5. R a subset of
S

Σ(n) 6= /0 Q×Σ(n) ×T∆({q(xi) : q∈ Q∧

xi ∈ [n]})×Pn, therules.

As usual, the rule(q,σ(n),t,(p1, . . . , pn)) of a tdTTR

will be written

〈q(σ(x1, . . . ,xn)) → t, p1, . . . , pn〉.

A tdTTR, M = (Q,Σ,∆,q0,R,P,δ), is said to be determin-
istic whenever given rules

1. 〈q(σ(x1, . . . ,xn)) → t, p1, . . . , pn〉 and

2. 〈q(σ(x1, . . . ,xn)) → t ′, p1, . . . , pn〉

in R thent = t ′. The class ofdTTR that are deterministic
will be writtendTTR.

A TTR, M = (Q,Σ,∆,q0,R,P,δ), defines a relation
on TΣ∪∆∪Q. Given t,t ′ ∈ TΣ∪∆∪Q, we write t →M t ′

if there isC, a context ofTΣ∪∆∪Q, 〈q(σ(x1, . . . ,xn)) →
v, p1, . . . , pn〉 ∈ R and(tk)k∈[n] verifying:

1. t = C[q(σ(t1, . . . ,tn))]

2. for all k∈ [n], tk ∈ L (P, pk)

3. t ′ = C[v[t1, . . . ,tn]].

The reflexive and transitive closure of→M is written
⇒M, and the relation thatM defines betweenTΣ andT∆ is

RM = {(t,t ′) : t ∈ TΣ ∧ t ′ ∈ T∆ ∧q0(t) ⇒M t ′}.

We now introduce the notion of strongly single use and
single use deterministic top-down transduction that has
been introduced in Engelfriet and Maneth (1999).

Definition 9.5.2. Let M= (Q,Σ,∆,q0,R,P,δ) be a dTTR

and Q be a nonempty subset of Q. M is saidstrongly
single use with respect toQ, if for all q,q′ ∈ Q and all
two rules of R :

1. 〈q(σ(x1, . . . ,xn)) → v, p1, . . . , pn〉

2. 〈q′(σ(x1, . . . ,xn)) → w, p1, . . . , pn〉

the existence of contexts C and C′, q′′ ∈Q and j∈ [n] such
that v= C[q′′(x j)] and w= C′[q′′(x j)] implies q= q′ and
C = C′.

If M is strongly single use with respect to Q the M is
saidstrongly single use.

Definition 9.5.3. Let M= (Q,Σ,∆,q0,R,P,δ) be a dTTR.
M is saidsingle useif there is a partitionΠ of Q and a
collection of mappings(Tσ,〈p1,...,pn〉 : Π× [n] → Π : σ ∈

Σ(n), p1, . . . , pn ∈ P) such that:

1. for all Q ∈ Π, M is strongly single use with respect
to Q and

2. for all 〈q(σ(x1, . . . ,xn))→ v, p1, . . . , pn〉 ∈R with q∈
Q ∈ Π, if there is an occurrence of q′(xi) in v then
q′ ∈ Tσ,〈p1,...,pn〉(Q, i).

The partitionΠ is called asu partitionfor M and T is
called acollection of su mapping forM. We will write
dTTR

su to denote the class of dTTR that are single use.

We now define the relation computed by multi bottom-
up tree transduction.

A mbutt M = (Q,Σ,∆, root,qf ,R) defines a relation
→M on the trees ofTQ∪Σ∪∆∪{root,qf }. Given t,t ′ ∈
TQ∪Σ∪∆∪{root,qf }, we havet →M t ′ if there isC a context of
TQ∪Σ∪∆∪{root,qf } verifying one of the two following prop-
erties:

1. t = C[σ(q1(t1,[r1]), . . . ,qn(tn,[rn]))], t ′ =
C[q0(t1, . . . ,tr0)[t1,[r1], . . . ,tn,[rn]]] and

σ(q1(y1,[r1]), . . . ,qn(yn,[rn])) → q0(t1, . . . ,tr0) ∈ R

2. t =C[root(q(t1, . . . ,tn))], t ′ =C[qf (v[t1, . . . ,tn])] and

root(q(x1, . . . ,xn)) → qf (v) ∈ R

The reflexive and transitive closure of→M is denoted by
⇒M. M defines a relation betweenTΣ and T∆, RM =
{(t,t ′) ∈ TΣ ×T∆ : root(t) ⇒M qf (t ′)}.

A mbutt,M = (Q,Σ,∆, root,qf ,R), is calleddetermin-
istic whenever

1. σ(q1(y1,[r1]), . . . ,qn(yn,[rn]))→ q0(t1, . . . ,tr0)∈Rand

2. σ(q1(y1,[r1]), . . . ,qn(yn,[rn])) → q′0(t
′
1, . . . ,t

′
r ′0

) ∈ R

imply q0 = q′0 and for allk∈ [r0], tk = t ′k.
Now that we have defined all the necessary notions, we

prove that the classes of transduction realized bydTTR
su

include those defined by ldmbutts. In Fülöp et al. (2004),
it is shown thatdTTR and dmbutts define the same class
of transduction. We here prove the transductions defined
by ldmbutts can be defined bydTTR

su; this proof uses the
same construction as in lemma 4.1 in Fülöp et al. (2004)
and we thus only have to prove that when this construc-
tion is used on a ldmbutt it ouputs adTTR

su.

Let M = (Q,Σ,∆, root,qf ,R) be a ldmbutt andA =
(Q,Σ,δ) be thedBA underlyingM. We construct the
dTTR T = (Q′,Σ,∆, p0,R′,Q,δ) as follows:

1. Q′ = {p0}∪{〈q, j〉 : q∈ Q(n)∧ j ∈ [n]}

2. R′ is the smallest set of rules verifying:

(a) if σ(q1(y1,[r1]), . . . ,qn(yn,[rn])) →
q0(t1, . . . ,tr0) ∈ R then for all j ∈ [r0],

〈〈q, j〉(σ(x1, . . . ,xn))

→ t j [t1,[r1], . . . ,tn,[rn]],q1, . . . ,qk〉 ∈ R′

with for k∈ [n] andl ∈ [rk], tk,l = 〈qk, l〉(xk).
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(b) if root(q(x1, . . . ,xn) → qf (t)) ∈ R and for all
k∈ [n] we have that there is, inR′ a rule of the
form

〈〈q,k〉(σ(x1, . . . ,xk))t
′
k,q1, . . . ,qn〉

then 〈p0(σ(x1, . . . ,xn)) →
t[t ′1, . . . ,t

′
n],q1, . . .qn〉 ∈ R′

Fülöp et al. (2004) proves thatRT = Rm and thatT is
indeed adTTR. We just have to prove that from the fact
thatM is linear,T effects a single use transduction.

Although T is not itself single use (the start statep0

does not satisfy the definition), we will prove that the
transducerT ′ naturally obtained fromT by suppressing
p0 is. Sincep0 is used only once at the very beginning
of any transduction performed byT, it follows thatT is
finite copying, and can thus be turned into a single use
transducer (Engelfriet and Maneth, 1999). To prove that
T ′ is single use we need to find ansu partition Π for
T ′. We defineΠ to be (Πq)q∈Q with Πq = {〈q, i〉|i ∈
[rank(q)]}. An element ofΠ corresponds to the set of
states ofQ′ that are defined from a unique state ofQ.

We now first prove that for a givenq ∈ Q, T ′

is strictly single use with respect toΠq. Suppose
that the rules〈〈q, i〉(σ(x1, . . . ,xn)) → v,q1, . . . ,qn〉 and
〈〈q, j〉(σ(x1, . . . ,xn)) → w,q1, . . . ,qn〉 are in R′, because
M is deterministic there is inRa unique rule of the form

σ(q1(y1,1, . . . ,y1,r1), . . . ,qn(yn,1, . . . ,yn,rn))

→ q0(t1, . . . ,tr0)

thus, by definition ofR′, we must have:

1. q = q0,

2. v = ti [t1,[r1], . . . ,tn,[rn]],

3. w = t j [t1,[r1], . . . ,tn,[rn]] with,

4. for k∈ [n] andl ∈ [rk], tk,l = 〈qk, l〉(xk).

Suppose that bothv and w contain an occurrence of
〈qk, l〉(xk), then bothti and t j contain an occurrence of
xk,l and sinceM is linear we havei = j which finaly en-
tails that the two rules are the same, and the occurrences
〈qk, l〉(xk)considered inv andw are in fact a unique oc-
currence; thereforeM is strictly single use with respect to
Πq.

To complete the proof thatT ′ is single use, we now
define a collection ofsumapping ofT ′.

Givenσ ∈ Σ(n) andq0, . . . ,qn ∈ Q, we define the func-
tion Lσ,〈q1,...,qn〉 : Π× [n]→ Π to associateΠqi to (Πq0, i)
if σ(q1(y1,[r1]), . . . ,qn(yn,[rn])) → q0(t1, . . . ,tr0) is in R.
The determinism ofM trivially implies thatLσ,〈q1,...,qn〉

is actually a function. Now for〈〈q0, i〉(σ(x1, . . . ,xn)) →
v,q1, . . . ,qn〉 ∈ R′, whenever〈qk, l〉(xk) occurs inv, by
construction, we have that〈qk, l〉 ∈ Lσ,〈q1,...,qn〉(Πq0,k) =
Πk. This finally shows thatT ′ is single use (and there-
fore, as per the remark above, thatT realizes a single use
transduction).
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TL Tree Languages

Rec Regular Tree Languages

CF Context Free

OI Outside-In

IO Inside Out

TAG Tree Adjoining Grammars

MTT Macro Tree Transducer

dTTR
f c Deterministic Top Down
Tree Transducer with Regular
Look-Ahead (Finite Copy) —
see this paper.

(l)dmbutt (Linear) Deterministic
Multi-Bottom-Up Tree Trans-
ducer — see this paper.

a was proved in Fülöp et al. (2004)

b was proved in Mönnich (1997)

1, 2 these non inclusions were
proved in Michaelis (2005) by
looking at the string languages

4,5,6 are presented in Engelfriet
and Heyker (1992)

7,8 are obvious.

Figure 9.2: Minimalist derived trees and friends


