Words as Modules:
a Lexicalised Grammar in the framework of
Linear Logic Proof Nets

Alain Lecomte?®, Christian Retoré?

3) Projet Calligramme & Université Pierre Mendés-France, Grenoble
%) Projet Calligramme, INRIA-Lorraine & CRIN-C.N.R.5., Nancy

Abstract

We present a syntactic calculus relying on the notion of proof net,
ie. a geometric representation for proofs in linear logic. The lexicon
associates 8 module or partial proof net with each word, and this
information completely encodes the syntactic behavior of the word.
Parsing a sentence consists in combining the modules associated with
its words into a complete proof net. In order to handle word order,
this model takes place in a non-commutative extension of linear logic
called Pomset logic.

Introduction

In this paper we describe the principles of a syntactic calculus whose build-
ing blocks are partial proof-nets or modules. The main idea is to associate

2 ALAIN LECOMTE, CHRISTIAN RETORE

with each lexical item one or more modules which encode(s) its syntactic
behaviour. The simplest of these modules are obtained by unfolding the
components of formulae that would be the type(s) of the lexical items in
a type-logical grammar a la Morrill (1994), while the more sophisticated
ones really go beyond the usual type-logical approach. The syntactic anal-
ysis within such a paradigm consists in combining these modules into a
complete proof-net by a uniform set of plugging rules.

This approach is related to the Partial Proof-Trees as building blocks of
a categorial grammar of Joshi and Kulick (1995,1997), the main difference
being the emphasis put on the geometric notion of Proof-Net as in our first
attempt (Lecomte and Retoré 1995).

Our main motivation is to obtain a general logical model in which it
would be possible to embed other calculi like Lambek grammars on one
side and Lexicalised Tree Adjoining Grammars on the other side.

The Lambek calculus is a very elegant syntactic calculus because it is
a pure logical calculus enjoying all the properties one can expect: cut-
elimination, denotational semantics, truth valued semantics. This is also the
reason why it allows a very simple interface with Montagovian semantics.
Unfortunately, it suffers from many limitations when applied to linguistic
descriptions: for mstance it does not handle head-wrapping, cross serial
dependencies, right extraction, extraposition from a non-peripheral site etc.

On the other side, the LTAG model provides us with a very efhicient
model which succeeds in many cases where the Lambek calculus fails. But,
because some problems are also unsolvable in L-TAG (like long-distance
scrambling in German, Romance Clitics or Kashmiri wh-extraction), vari-
ants of TAG have been developed, like Multi-Component TAG of Joshi
(1987), Multi-Component TAG with Domination Links of Becker, Joshi
and Ranbow {1991) and D-Tree Grammar of Rambow, Vijay-Shanker and
Weir (1995). These models have much expressive power, even if they stay
In a reasonable range of complexity. But they use an algebraically complex
formulation in terms of trees, and as usual with non-logical formalism the
relation to semantics is not simple.

In the present paper, we propose a logical system, based on the proof net
syntax of Linear Logic which incorporates operations similar to the ones
of TAGs as the plugging rules. The key point in these plugging rules is
that they preserve a very simple correctness criterion — which states that
objects we construct correspond to proofs in the underlying logical system.

WoRrDs A8 MODULES 3

We first give an overview of the whole logical system, called POMSET-
logic, introduced in Retoré (1993) — see Retoré (1997) for an updated
presentation in English. Roughly speaking, this logical calculus i1s based
on Multiplicative Linear Logic enriched with the non-commutative connec-
tive before, and deals with Partially Ordered Multi-sets instead of ordinary
multi-sets of formulae. Then, we present a restricted version of the proof
nets of Pomset logic. Indeed this restriction is enough for linguistic de-
scriptions, and its linguistic meaning is easier to understand than the very
general first attempt of Lecomte and Retoré (1995).

Linear Logic and Word Order

Linear Logic (LL) introduced in Girard (1987) (see Girard 1995 for an excel-
lent survey) is obtained from classical logic by introducing two modalities ?
and ! which control the structural rules of contraction and weakening. Thus
the ordinary connectives or and and split into a multiplicative — respec-
tively denoted by ¢ and @ — version and an additive one — respectively
denoted by @ and &. As this system is classical it involves an involutive
negation, denoted by (...)* which is both an additive and a multiplicative
connective. The multiplicative connectives handle the notion of resource
management, while the additive ones describe choices.

Our work takes place into the multiplicative fragment, which is simpler
and convenient for our purpose — in particular it does not allow any form of
contraction or weakening. This logic is classical, in the sense that negation
is involutive (F+)t = F', and p and § are the dual one of the other via the
following de Morgan rules: (FpF)!t = FL@Fltand (FR F)t = FLpFt
As usual in the classical case, there is an implication defined by means of
negation and disjunction: A—o B = Al p B.

In order to handle word order, one needs some non-commutativity. If the
two connectives are non-commutative, i.e. if the structural rule of exchange
is left out like in Abrusci (1991) one gets the classical extension of the
Lambek calculus.

QOur approach within the framework of Pomset Logic is completely differ-
ent: we enrich (commutative) MLL with a non-commutative multiplicative

(but still associative) connective called defore. The de Morgan rules extend
to this connective, which is self-dual — (A < B)* = AL < B — and which

4 ALAIN LECOMTE, CHRISTIAN RETORE

lies in between & and g wrt. linear implication: A ® B —0 A < B and
A< B - AgB. In order to handle this connective, we need to consider
that the multiset of conclusions of a proof is partially ordered — in general,
a proof has several conclusions in a classical system. This is particularly
suitable in natural language processing to handle relatively free word order.

For people familiar with the Lambek calculus we insist that A+ < B is
very different from A—oB = Al ¢ B. Indeed, the order it introduces as little
to do with the order in the Lambek calculus: for instance A and AL < B
leads to B only if there is no order between A and At < B.

Proof nets for Pomset Logic

As a consequence of the afore mentioned de Morgan laws we can restrict
ourselves to formulae in which negation is only applied to propositional
variables. Thus the language that we consider is defined by:

‘P a set of propositional variables — positive atoms

P+ the set of negated propositional variables — negative atoms

Fu=P|PL | FoF|F<F|FQF

Beware that when we write G, this is just a short hand for the unique
formula of this language which is obtained from G* by internalising the
negation until it reaches the propositional variables, by means of the de
Morgan laws.

Exactly like the best way to represent proofs in Intuitionistic Logic con-
sists in using Natural Deduction (where proofs look like (pseudo-)trees), the
natural syntax for Linear Logic (LL) is proof net syntax that was introduced
in the original paper (Girard, 1987).

As shown in Retoré (1993) Pomset logic very simply extends the usual
proof net syntax and our presentation will follow Retoré (1997). It is based
on the notion of R&B-graph.

Let us call a R&B-graph an edge bicoloured graph, the two colours of the
edges being B(bold, blue) and R{regular, red). The B-edges are undirected
and never adjacent. The R-edges may be undirected or directed, in which
case we call them R-arcs. They correspond to connections between formulae
(connective-links), or to the partial order between conclusions.

WoRrDs A8 MODULES 5

Given a formula ¥, we define here its R&B-tree T'(F), as an inductively
defined R&B-graph. Actually it is not a tree, but looks like the sub-formula
tree, hence the name tree.

(Given an atomic formula ¢, the discrete graph is the R&B-tree of ', with
root ¢, and leaf c.

If C' is a compound formula A * B with * € {¢, ®, <} and if T(A) and
T(B) are respectively the R&B-trees of the formulae A and B, Table 1.
describes, according to what * stands for, a R&B-tree of (', with root (', and
both the leaves of T'(A) and T'(B) as leaves.

Table 1.

Formula ApB A< B A@B
R&B-tree T'(C)

T(A) T(B) | T(A) T(B) | T(4) T(B)

A B A B A B

A

ApB A< B A®

The added edges, arcs and vertices are called a *-link: A and B are sald
to be its premises and A#* B its conclusion. Notice that each bottom vertex
of a B-edge of the R&B-tree T'((') of a formula C, is labelled with a sub-
formula of . Qut of these R&B-trees we define the R&B-proof-net, whose
building blocks are links.

A partial proof structure with conclusions and cuts Ci,...,C, and
cuts GY, ..., G§ — ie. formulae G; = X; ® X;" marked as cuts — with order

R on its conclusions and cuts is a R&B-graph which consists in:

— the family of R&B-trees T(C1), ..., T(Cr), T(G1), ..., T(G,). This part

represents the syntactic forest, of the sequent Cy,...,Cp, Gy, ..., Gy

— a family of B-edges, called azioms, each of them linking two leaves
being the negation one of the other, in such a way that
(¥} for each leaf there exists at most one aziom incident to it.

— a family of R-arcs, representing the order, i.e. there is one such R-arc
from a conclusion or cut X to another ¥ whenever X < Y[R]

6 ALAIN LECOMTE, CHRISTIAN RETORE

— a special mark, o, on the roots of the T(G;) to make a distinction
between a cut and a conclusion X ® X+ which is not considered as a

cut.

The leaves which are not incident to any B-edges are called the hypothe-
ses of the (partial) proof structure.

A proof structure is a partial proof structure with no hypothesis — in
this case, there is a B-edge incident to each vertex. Given a proof structure
a conclusion is called an output whenever it is the positive conclusion a

1 is the premise of a times

of an axiom a,a’ whose negative conclusion a
link. A proof structure is said to be intuitionistic whenever it has a single
output.

A (partial) proof structure is said to be a (partial} proof net whenever
is does not contain any alternate elementary (&) cycle, that is to say a cycle
consisting in a sequence of consecutive edges which are alternatively B and
R edges in which each vertex appears exactly once.

We will mainly need the following result, which applies to partial proof
nets provided a cut does not reach an hypothesis — clearly, in this latter
case, the cut can not be eliminated. The calculus of ordered proof nets
enjoys cut-elimination, which is strongly normalising and confluent: a proof
net with conclusions and cuts F, ..., iy, G1, ..., G; ordered by R reduces to
a cut free proof net with conclusions Fi, ..., F}, ordered by §R|F1Fn

As we do not use proof nets with an order on the conclusions and cuts,
the algorithm performing cut-elimination may be described as follows:

— a cut link between Ax B and At x Bt where
(*,%) € {(<, <), (p, ®),(®, ©)}, is erased and replaced with two cut
links, one between A and A and one between B and Bt

— a cut link between a and a' with a € P is suppressed, as well as the
two vertices ¢ and e’ and their incident B-edges — the two axioms
which they are respectively the conclusions of — and a new axiom is
added between the e and e which were previously respectively linked
to ¢ and at.

As we already said, the partial proof nets correspond to words and parsing
a sentence or a phrase consists in plugging them in order to obtain a proof
net. Here are the two ways of plugging two PPN M) and M; together that
we consider:

WoRrDs A8 MODULES 7

axiom plugging consists in identifying an hypothesis a of M; and a con-
clusion of @ of M;. This corresponds to complementation according
to the input or hypotheses sub-categories.

cut plugging consists in linking by a cut-link two dual conclusions and
then performing cut-elimination. This corresponds to modification or
adjunction.

Actually we shall only make use of the second construction when one of
the dual formulae is of the shape x ® x* with x atomic, ie. when one of the
two may be read as a cut on an atomic formula. Such a conclusion/cut will

be call a gate.

Labels for Expressing and Computing Word Order

Now that we have set the general formalism, we will distinguish, among all
possible partial proof nets, the ones which deserve a specific linguistic inter-
est. In our system, each word is associated with a partial proof-net. This
partial proof-net displays the parts of a formula which expresses the type of
the word, that means : what is its category and how it must be processed in
any context where it occurs. Vertices at the bottom of a B-edge of a partial
proof-net are themselves typed with a sub-formula of the conclusion and will
be labelled with a partial order on strings. These labels will be given for
partial proof nets in the lexicon and computed for compound partial proof
nets, by rules of unification in the axiom links, and rules of propagation into
the links of partial proof nets.

A partial proof net is correctly labelled whenever each (sub)formula is
labelled with a pomset of strings which fulfils the following criteria:

— Labelled axiom-link : it has two conclusions, (A,R) and (A*,R)

where R is a partially ordered multi-sets of strings — the two labels
of the conclusions of an axiom link are equal.

— Labelled tensor-link : if the conclusion is labelled by the pomset R,
one of the two premises (we do not know which one) of the tensor-link
is labelled with the union of R with the pomset R’ that labels the
other premise (thus, if ® = @, then the two premises are labelled by
the same pomset)

8 ALAIN LECOMTE, CHRISTIAN RETORE

— Labelled before-link : the conclusion A< B is labelled by the pomset
f < R’ (where < means that all the elements of R are before all the
elements of).

— Labelled par-link : the conclusion A g B is labelled by the pomset
R UR (no order between elements of i and elements of R').

— Labelled cut-link : the cut is labelled by @ and the pomsets of the
two premises are equated (particular case of the tensor-link).

This definition, is a particular case of the order on axioms we used in
Lecomte and Retoré (1995) and in the restricted case that we present here
the way the order is computed is clearer. Let us justify this labelling:

— Only the before connective creates an order on strings.

— The times connective preserves the order. Indeed, in a calculus of right
handed sequents, a ®-formula is the dual of an implicative formula,
and thus no order is added, since this connective describes a trans-
formation : a sequence of types gives a new type, but the underlying
string remains unchanged. Notice that in such a classical system all
cases of par formulae can be viewed as implicative ones, because of
the duality and the De Morgan laws. For instance: Ap B = A — B,

— A pformula corresponds to the dual of a @-formula. It is therefore
natural to retrieve the orderings which occur on the two components,
but without creating any new ordering.

From now on we shall call Labelled partial proof nets the ones which are
labelled according to the principles we gave above.

It should be noticed, in the previous definition, that the labels may be
computed from the (Partial) Proof Nets — but this redundant information
is useful to underline word order and to explain how orders compose when

plugging Partial Proof Nets.

Lexicalised Intuitionistic Labelled Partial Proof-Nets

Some labelled partial proof nets deserve a special interest because they
roughly correspond to the elementary trees of TAGs.

WoRrDs A8 MODULES 9

An Intuitionistic Labelled PPN is said to be lexicalised if and only if :

1. it has two conclusions: its output & connected by an axiom link to
a b’ in some Y}, and its main conclusion which is of the following

form: at eXi®Y)e...0e(Xn®Yn),

2. a’ is labelled by a pomset consisting in one word/string w (which
belongs to the lexicon), and the formulae X; @ Y; by @,

3. o is linked by an axiom-link to an atom a which occurs in one of the

Xi

4. every X; is a par/before formula, ie. does not contains any times ,
connective.

Let us comment this definition:

— If we remember that connectives on the right correspond to their duals
on theleft, we see that such a conclusion, when moved to the left, leads

toaformula: a® (X; oY1) ® - @ X, oY1)

— Thus the second condition in the definition makes an occurrence of
e’ necessary in one of the X;. This can be interpreted as : the word
w 1s an e-phrase and — to be understood as times, 1e. multiplicative
conjunction — when supplied with an X;phrase, it yields an Y-
phrase.

— notice this definition is coherent with our definition of labelled links:
only the declarative part (w isan a-phrase) provides an initial pomset.
The procedural part contains initially no pomset, but in order to fulfill
the principles of the labelling in links, at least one of the X; will
receive a pomset (which contains at least w, because of the axiom link
between a' and e, (and because X is a par/before formula)), and this
pomset will be transfered to Y+, and possibly to the output (if there
are axiom links between the ¥; and the X3).

Following these intuitions the lexical item loves has the following type:
({loves} :v) @ ((v < np) 0 vp) ® ((np < vp) —0 8)
which is the type of a transitive verb. It gives a string labelling the verb,
and two other informations: if followed by an np, it will give a vp and if this

10 ALAIN LECOMTE, CHRISTIAN RETORE

vp 1s preceded by an np it will give an s. Of course, we need to express the
identity of the two occurrences of v and the identity of the two vp. There,
the proof representation is needed, since the only possibility of modelling
this identity between two nodes by purely logical means is to link them via
an axiom link — (cf. Figure 1.).

Figure 1.

] »

\/

{loves} : vt NG

(h < (Q)H

ut

1oy

y

In Figure 2, we compute, following the rules for labelling, the label of
each (sub)formula — labels are denoted by integers. Let us explain how

WoRrDS A8 MODULES 11

the labelling rules work on this particular example. By the conditions on
labelled links, (1) is identified with {loves}. When the np (2) is identified
with a real np, thus giving (2) = {a < woman} for instance, the conclusion
of the before-link will be labelled by : {loves < a < woman}. This pomset
is transmitted to the output vpl (because of the tensor-link). When the
second np (3) is instantiated (for instance by {a < man}), we shall get as a
new pomset labelling the conclusion of the second before-link : {a <man <
loves<a<woman}, and this pomset is transmitted to the output s*. Notice
that the conclusions in the §-link remain empty:thus the conclusion of the
lexicalised PPN associated with the verbal form loves is also labelled by
{loves}.

This makes sure that plugging by axiom every hypothesis a with the
output @ of an e phrase yields the correct word order.

Gates and Modifiers

Up to this stage, the operation of plugging by cut-links can hardly be used:
for the time being, there is no obvious possibility of finding interesting cut
formulae. But we may consider gates in order to use them and to model
modifiers. A gate is a fake conclusion e @a® with a being an atomic formula,
L (vesp. a) —
notice that the absence of &cycle makes sure that the two axioms ¢ and

a’ are the conclusions of are distinct. If we were to reduce this cut, these

such that ¢ (resp. al) is linked with an axiom link to an a

two axioms and the cut would be replaced with a single axiom linking their
dual counterpart. The label of a gate will always be empty, as opposed to
the main conclusion which is always labelled, like we previously saw, by the
same pomset as the declarative B-edge. We shall add such gates along the
declarative B-edge of a lexicalised labelled partial proof net.

The only modification consists in replacing an axiom link with a sequence
axiom link, cut-link, axiom link, and it is easily observed that such a trans-
formation preserves the property of being an ILPPN.

For instance, if we want to introduce adverbials, like passionately, we
must open such a gate in every LPPN associated with a verb. This will give
raise to new LPPNs like shown in Figure 3.

12 ALAIN LECOMTE, CHRISTIAN RETORE

Figure 3.

{loves}
UJ_
UJ_ [
\/
lvl®v

Such an ILPPN can be then used together with a module which intro-
duces a verb modifier. This modifier LPPN contains a dual conclusion »*gv
(cf. Figure 4). It is then possible to link the two modules by means of a
cut. Then, by cut-elimination, two axiom-links will be inserted between
dual v-nodes one belonging to the adverbial module and the other to the
verbal one. The label of the v node, and then the label of the vp! node will

be transformed and give a correct word order.

Figure 4.
{passionately} = (1) (2)
adv
v
(1 <2
ol
L
b advt \i v v

I Y

This leads us to the following definition. A Modifier-LPPN is a La-
belled Partial Proof-Net with two conclusions, where one of the two conclu-
sions is the par of two dual atoms z and z*, where z is the type of object
that the module modifies, and the other one the main conclusion.

WoRrDS A8 MODULES 13

Let us explain the behavior of the MLPPN of Figure 4. When linked
by a cut link to an LPPN associated with a verbal form (cf. Figure 5),
the corresponding times formula is labelled by the same pomset (from the
definition of labelled cut-links) and so, the highest v-entry in the verbal
PPN will be labelled by {passtonately, loves}, but without any ordering on

it. It 1s the operation of cut-elimination which will provide the correct word
order.

Figure 5.

{passionately} = (1) (2)

adv Yo« (2

ot

adut Y pl

cuT

This operation (which is an intrinsical part of the process of plugging by
cut) gives us finally the PPN of Figure 6.

Figure 6.
(1)<(2)
{passionately} = (1) (2) = {loves}
I aal
oL

N

If there is no modifier, the PPN of Figure 3 is still valid. In this case,
cut-elimination amounts to suppressing the times-link v ® v+, which is, as
already said, a mere instance of a cut. Let us notice that without cut-
elimination, the word order would remain free. It is a question whether we

14 ALAIN LECOMTE, CHRISTIAN RETORE

could represent in this way dislocated sentences, sentences that result from
different orderings of words with particular intonations.

Dicontinuous Constituents

In order to give an example of the expressive power of our system let us
consider an example of a construction which is not handled by the Lambek
calculus. Let us consider French negation, which is a discontinuous con-
stituent, namely French negation which we will assume to be ne ... pas
which wraps the verbal head — the variants ne ... plus, ne ... jamais etc.
being completely similar.

The 1dea 1s to associate with this negation a MLPPN whose main con-
clusion is {ne} : neg® p ({pes} : neg p((neg < (v < negt)) @ vt) and whose
secondary conclusion is v+ @ v.

Let us represent the PPN by a linear expression whose atoms linked by
an axiom link are marked by a same label [¢], where ¢ is an integer. Then ne
... pas is associated with : ‘ [1] : ({re} : negt) e (([2] : {pas}: neg)p

(([1] s neg < ([3] : w < [2] : neg™)) ® [4] : v1)),
(3] : v5) g ([4] : v)
The dual formula of the main conclusion (or type of the expression) is :
([1] : {ne} : neg)
BU([2] : {pas} :neg") @ (([1]: meg < (3] 10 < [2] :neg")) — [4]:0))

The underlying formula expresses that this module provides the context
with ne and pas — whose types are the dual of the other. The axiom links
of the module express that a verb v ([3]) wrapped by ne and pas gives a
new verb ([4]).

By plugging by cut-link this module with a verbal ILPPN, we obtain the
right word order for the negative sentence, for instance Pierre ne regarde
pas Marie (Peter does not look at Mary) thus obtaining a simple logical
formulation of head-wrapping, as opposed to hitherto considered extensions

of the Lambek calculus.

Conclusion

The system we have presented here is specifically a resource-conscious sys-

WoRrDS A8 MODULES 15

tem. Duality must be interpreted in terms of exchange and communication.
Firstly, the plugging of two atomic formulae via an axiom link expresses that
some demand of a phrase is satisfied. Secondly, the plugging via a cut-link
makes a communication between two processes which can be synchronised
by removing the cut — observe that in this case as well, one cut-formula
provides what the other formula (the dual one) needs.

This characteristic allows to express many phenomena. For instance, in
wh-extraction as well as in cliticization, a word (the wh-word or the clitic
word) is supposed to suppress a demand for an np of a given form (for
instance an accusative np for what, or an np of the same case of the clitic
in the clitic-case). But to suppress a demand is... to satisfy it, just because
of the involutive negation — (z1)! = z, i.e. a demand for a demand for a
T 1s equivalent to an z.

This kind of mechanism is typical of a system based on resource con-
sumption as may be observed in categorial grammar, for instance in the
type-raising operation. Here, we go beyond this because as opposed to the
Lambek calculus which only has an implicit non-involutive negation, we
take advantage of the explicit and involutive negation of linear logic to ex-
tend this phenomenon to other situations, and this results in an important
expressive power.

Finally, let us notice the important advantage of this system, being based
on logic. We can avoid ad hoc and very particular algebraic operations, for
instance on trees or strings. Here all the machinery may be summarised as
follows: given the initial LPPNs as they are, buitld a correct proof-net, the
only requirement being that the correctness criterion, namely no elementary
alternate circuit 1s preserved during the construction of the proof net. A
future work will study the embedding of TAGs and Lambek grammars in
this system.

Acknowledgements: Many ideas in this paper come from discussions in the
Calligramme group, especially with Philippe de Groote.

16 ALAIN LECOMTE, CHRISTIAN RETORE

References

V. M.Abrusci. 1991. “Phase semantics and sequent calculus for pure non-
commutative classical linear logic”. Journal of Symbelic Logic 56(4), 1403~
1451.

T. Becker, A. Joshi and Q. Rambow. 1991. “Long distance scrambling and tree
adjoining grammars”. In 5** EACE, 21 — 26.

J.-Y. Girard. 1987. “Linear logic”. Theoretical Computer Seience 50(1):1-102.

J.-Y. Girard. 1995. “Linear logic: its syntax and semantics”. In J.-Y. Girard,
Y. Lafont and L. Regnier (eds), Advances in Linear Logic. (London Mathe-
matical Society Lecture Notes, vol. 222), Cambridge: Cambridge University
Press, 1-42.

A, Joshi. 1987. “An introduction to tree adjoining grammars”. In A. Manaster-
Ramer (ed.), Mathematics of Language Amsterdam and Philadelphia: Ben-
jamins, 87 — 114,

A. Joshi and S. Kulick. 1995. “Partial proof trees as building blocks for a cate-
gorial grammar”. In G. V. Morrill and R. QOehrle (eds), Formal Grammar,
FoLLI, 138-149.

A. Joshi and S. Kulick. 1997. “Partial proof trees, resource sensitive logics and
syntactic constraints”. In C. Retoré (ed.) , Logical Aspects of Computa-
tional Linguistics, LACL’96, (LNCS/LNALI series), Heidelberg and New-
York: Springer-Verlag. To appear.

A. Lecomte and C. Retoré. 1995. “Pomset logic as an alternative categorial
grammat”. In G. V. Morrill and R. Oehrle (eds), Formal Grammar, FoLLI,
181-196.

G. V. Morrill. 1994 , Type Logical Grammar. Dordrecht and Hingham: Kluwer.

O. Rambow, K. Vijay-Shanker, and D. Weir. 1995. “D-tree grammars”. 3374
meeting of the Association for Computational Lingusstics.

C. Retoré. 1993, “Réseaux et Séquents Ordonnés”. Thése de Doctorat, spécialité
Mathématiques, Université Paris 7.

C. Retoré. 1995. “Pomset logic: a non-commutative extension of classical linear
logic”. In J. R. Hindley and Ph. de Groote (eds). Typed Lambda-Calculus
and Applications, TLCA’97. (LNCS, vol. 1210) Heidelberg and New-York:
Springer-Verlag, 300-318.

