Pomset logic as an alternative categorial grammar

Alain Lecomte* Christian Retoré

lecomte@shm.grenet.fr retore@loria.fr

INRIA-Lorraine & CRIN-C.N.R.S.

615, rue du jardin botanique

B.P. 101

F-54 602 Villers lés Nancy cedex FRANCE

Abstract: Lambek calculus may be viewed as a fragment of linear logic, namely intu-
itionistic non-commutative multiplicative linear logic. As it is too restrictive to describe
numerous usual linguistic phenomena, instead of extending it we extend MLL with a
non-commutative connective, thus dealing with partially ordered multisets of formulae.
Relying on proof net technique, our study associates words with parts of proofs, modules,
and parsing is described as proving by plugging modules. Apart from avoiding spuri-
ous ambiguities, our method succeeds in obtaining a logical description of relatively free
word order, head-wrapping, clitics, and extraposition (these latest two constructions are
unfortunately not included, for lack of space).

0 Introduction 2
1 Pomset Logic 2
1.1 OVErview oo v e e e e e 2
1.1.1 Origin: coherence spaces 2
1.1.2 Structure and properties of POMset Logic 3
1.1.3 Intuitive meaning of pomset logic 3
1.2 Pomset proof mets 4
1.2.1 Defining proof nets Lo oo 4
1.2.2 Cut elimination L o 5
1.4 Linguistic remarks on POMset logic 7
1.4.1 Relation with the Lambek calculus 7
1.4.2 The fail of a too naive linguistic model 7
1.4.3 The solution: the order on axioms 8

2 The linguistic model based on POMset logic and an example of relatively
free word order 9
2.1 Words as modules, composition as plugging 9
2.2 The parsing algorithm L oL 10
2.3 Immediate outcomes Lo o 11
2.3.1 Getting rid of spurious ambiguities 11
2.3.2 Relatively free word order 12
2.3.3 Incremental strategy Lo 12
3 Extending the scope of categorial grammar 12
3.1 Principles 12
3.2 Head wrapping: French negation in two pictures 13
4 Conclusion 13
5 Appendix: Proof of lemma 10 14

*and Université Pierre Mendés-France, Grenoble

In: Formal Grammar,
Barcelona, August 95.

0 Introduction

Classical systems for grammatical deduction (NL, L, LP and so on, see for instance
[MO94, MK94] deal with sequents relating two sequences of formulae, each of them
built by a constructor (the comma) which is associative or not, commutative or
not. This gives raise to systems dealing with lists (L), multisets (LP), or binary
trees (NL). Flexibility is added by the use of the so-called structural modalities
[Moo94, Mor94].

In this paper we aim at introducing a formalism which directly processes par-
tially ordered multisets. This formalism, which is called POMset Logic, was intro-
duced in [Ret93], and was rather thought as a link between concurrency and linear
logic [Ret93, Ret95, Asp91, AD94].

Such a calculus shares many properties with ordinary (commutative) Linear
Logic [Gir87, Tro92, Gir95] and of course with Lambek Calculus [Lamb8] (this
latter is nothing else than Intuitionistic Multiplicative Non Commutative Linear
Logic without negation [Abr91, Abr94]). Among these good logical properties, let
us quote the cut-elimination theorem, strong normalisation and confluence, a proof-
net syntax and a coherent semantics.

But it is not a conservative extension of the Lambek calculus: it does not make
possible to define directed implications, as the order involved is rather a temporal
order. Therefore we have to describe the rather spatial word order by other means.

This leads to a system where words and expressions behave like parts of proofs,
i.e. modules, which are plugged together either directly or by using cuts. Such
a technique, first developed in [Gir86] is very related to linear logic as a logic of
communication.

When eliminating these cuts, a net is obtained, which exactly expresses what
must be the correct word order. These properties are here applied to linguistic
constructions which usually hardly fit in the categorial grammar setting.

As examples, we expose our description of relatively free word order, head-
wrapping (see the example of the French negation) and but, due to lack of space,
we skipped cliticisation and extra position, which, however, simply extends the
solution for head wrapping represented by French negation.

1 Pomset Logic

Before getting into technicalities of proof net syntax, we give the flavour of pomset
logic. For more details, one should have a look at [Ret93, Ret94, Ret95]

1.1 Overview
1.1.1 Origin: coherence spaces

As said above, the basic 1dea was to introduce non-commutative features in MLL.
So we had a look at coherence semantics, the closest denotational semantics for
linear logic.

In this setting we observed that there just exists one non-commutative multi-
plicative connective that we christened before . Within this semantics the general-
isation of before led us to consider partially ordered product of coherence spaces.

Thus our goal was to investigate the possibility of a logical calculus involving
POMsets of formulae. However without extra structure on the sequents, there are
just the two usual multiplicative conjunction and disjunction, hence it is a fairly
sensible solution. [Ret93, Ret94].

We decided to first look at proof net syntax, because of its close relation to
coherence spaces, as explained in [Ret94].

1.1.2 Structure and properties of POMset Logic

The language we consider is defined from atomic formulae, with the following con-
nectives: (unary) negation (...)~, (binary) conjunction ...® ..., (binary) disjunction
..., and (binary) before ... <

We consider formulae up to de Morgan laws, which extend to this language as
follows:

A7)y = A
(ApB)” = A~ @B~
(A < B)_ = A~ < B~ and not Bt<At
(A ® B)_ = A~ 9B~ from 1°! and 2™ lines

As said above, the conclusion of a proof is a partially ordered multiset of such
formulae. We write

F Ap, . Anli]

for a multiset {A1,...A4,} partially ordered by i.

We did not yet say a word about cuts: as usual in linear logic, a cut may be
viewed as a conclusion of the shape A ® A=, which behaves like IX. X ® X~ =
— (the unit). Here, we shall keep a track of the cuts with a symbol e, so we
actually deal with sequents:

F AL A e, 0]

Why such a trick? it is very useful that the partial order i involves the cuts,
while this trick 1s known to be harmless.

Although the algebraic properties should be derived from the syntax, we gave
them right now to fix the ideas.

Properties:[Ret93, Ret95]
e ®,<, are all associative,

e © and ® are commutative, but not <: no relation between A < B and B < A
in general.

o < isself-dual: (A< B)" = A~ < B~

e <, with respect to linear implication defined by A — B = A7 9B, lies in
between § and @:1.

AQB—-oA<B and A< B —o ApB

e one does not have, in general A~ < A, but whenever A~ < B and B~ < ('
then A < C.

1.1.3 Intuitive meaning of pomset logic

In the proof-as-programs paradigm (see e.g. [dG95, Abr93]), where the cuts are the
computations to be performed, we have a partial order on cuts. This partial order
may thus be viewed as a strategy for computing the proof net, which is described
within the syntax itself. This is a concurrent strategy, which simply consists in first
evaluating the cuts (i.e. the computations to be performed) according to this order.
In this setting, before corresponds to sequential composition, a cut between ApB
and A~ ® B~ reduces into a cut between A and A~ and a cut between B and B~
that can be done in parallel, while a cut between A < B and A~ < B~ reduces into

lwe are working with the MIX rule [FR94].

a cut between A and A~ which is to be computed first and a cut between B and
B~ which 1s to be computed next.

When thinking of proofs-as-processes, as in [Abr93, Asp91, AD94], where ® is
internal choice and § parallel composition, < corresponds to sequential composition
too.

Finally, when looking at proof-search-as-computation, the connective < also cor-
responds to sequential composition, as noticed in [Gug94].

Even though the interpretation of @ and § is changing according to the con-
sidered setting, one can harmlessly think of < as sequential composition, i.e. as
expressing a partial temporal order.

1.2 Pomset proof nets
1.2.1 Defining proof nets
We use standard vocabulary from graph theory, one can refer e.g. to [Ber73].

Definition 1 (Br-graphs) We deal with edge coloured graphs, the colour of an
edge being either blue (bold, B) or red (regular, R). The blue/bold edges, or B-edges
are undirected. They correspond to formulae and define a perfect matching of the
graph. The red/regular edges, or R-edges, may be undirected or directed in which
case we call them R-arcs. They correspond to connections between formulae. Such
graphs will be called BR-graphs.

A link is one of the following BR-graph

| Links |
Name Conclusions | Premises
Axiom A and A~ none
Tensor A® B A and B
Before A<B A and B
A B
A<B
Par ApB A and B
A B
o
ApB

Definition 2 (proof structure) Let BR be a BR-graph whose B-edges are labelled
with formulae. A link of BR s a link which is a full subgraph of BR. An ordered

proof structure consists in

e A BR-graph such that any B-edge ts the conclusion of exactly one link, and the
premise of at most one link, and the formulae (B-edges) which are not the the
premise of any link are called conclusions of the proof structure.

o A set of R-arcs between (the bottom side) of the conclusions which defines a
strict partial order (transitive and anti-reflexive relation).

o A subset of the conclusions which are the conclusion of a times link whose
premuses are dual: we mark them with a o, and call them cuts.

Notice that only the label of the axiom links’conclusions (or leaves) are needed.
Here is an example, without the formulae, for readibility:

N/

Now, as usual, not any proof structure correspond to proofs, but only the proof
nets:

Definition 3 (proof net) A proof net is a proof structure which coniains no al-
ternate elementary (&) circuit.

Notice the £-paths do not compose.

Beware that the adjective "elementary" is necessary. "elementary' is equivalent
to "simple" in the case of alternate paths because the B-edges are a matching.

The above example is a proof net but if the final link above the sixth conclusion
(from left to right) was a before link instead of a par link, it would not be a proof
net.

Although simple to prove, the next proposition shows that this proof net syntax
is a sensible syntax by itself, even without the corresponding sequent calculus:

Proposition 4 i is at most cubic to check whether a proof structure is a proof net.

Proof: Assume we are given a proof structure, and two of its vertices X and
Y. Checking whether there exist an &£-path from X to Y starting with its unique
incident B-edge is a standard breadth search algorithm. Each B-edge is visited once
in each direction, and it is thus quadratic in twice the number of B-edges, i.e. in
the number of vertices (the B-edges are a perfect matching of the graph). If we
repeat this for any vertex X and Y = X we get a cubic algorithm which checks the
absence or presence of #-circuit. ©

1.2.2 Cut elimination

Let us now turn our attention to cut elimination, which is a local graph rewriting
turning a proof net into a proof net, in such a way that the restriction of the order
to the conclusions is preserved under cut elimination.

There are three elementary steps of cut elimination to be described:

Proof Net . Order

-01<.2

R
E
D
E
X
R
E The order on the
D remaining cuts and
g conclusions barely is
T the restriction of the
original order.
T 1
1
1
1
R 1
F 1
1
% |
X : The order on the re-
| maining conclusions
| and cuts is the order
e e e e e e - _: ______ satisfying:
: : - on conclusions and
R 1 cuts different from
! ! e (resp o) it
E 1 1) 2
D . is exactly the orig-
Ut 1 inal order replacing
C : : o, (resp. e3) with e.
T 1 I
1 1
1 1

Proof Net . Order

T(A) T(B) T(AT)T(BT)

The order on the re-
maining conclusions
and cuts is the order
satisfying:

e lwlcol-=

cuts different from
e, (resp. o) it
is exactly the orig-
inal order replacing
o, (resp. e3) with e.

- nelther e; < o5 nor
L 3] < L&k

HOOTOHE®

1
1
1
1
1
1
1
1
1
1
1
1
1
A=-=====- - on conclusions and
1
1
1
1
1
1
1
1
1
1
1
1

In [Ret93, Ret95] it is shown that these local transformations turn a proof net
into a proof net (i.e. no E-circuit appear), and that this calculus enjoys the following

Theorem 5 (strong normalisation and confluence) The calculus of ordered
proof nets enjoys strong normalisation and confluence: a proof net with conclu-
sions and cuts Iy, ..., Iy, e1,... 8, ordered by i reduces to a cut free proof net with
conclusions Iy, ..., F, ordered by i|F1,...,Fn‘

Let us also say that this proof net syntax is sound and in some sense complete
with respect to coherence semantics [Ret94].

1.3 Linguistic remarks on POMset logic
1.3.1 Relation with the Lambek calculus

After introducing a somewhat complicated calculus, it 1s right to ask whether A~ <
B is any different from Lambek’s A\ B, i.e. from Abrusci’s A — B = A~ $B.

Firstly, we do not have in general A~ < A, which is very coherent with the
temporal interpretation: A~ and A can not match, because they live in a different
instant.

.Secpndly, dpﬁne A/B = A<B7, and A\B = A~ < B. Then we do not have
(A/B)/C = A/(C@B) like in the Lambek calculus, but, because of associativity and

self duality: (A/B)/C = AJ(B < C)
This formula and many others are hardly understandable from Lambek calculus
viewpoint.

This already stresses the difference from the Lambek calculus, and next comes
a similar remark stated on linguistic ground.
1.3.2 The fail of a too naive linguistic model

The guidelines provided by the Lambek calculus viewed as a syntactic theory leads
to the following idea. Take the basic sentence "Peter loves Mary”. Following the

Lambek calculus, one could assume Peter:np, Mary:np and loves:np™ <s<np~ and
try to derive s. Unfortunately we are thus unable to express the word order as an
order between the conclusions, and to prove a sequent
F Peterinp™, Marynp™, loves:np<s~ <np, s[i]
with i D {(Peter:np™,loves:np<s™ <np)(loves:np<s™ <np, Mary:np~)}. A proof
net with such conclusions always contains #&-circuit, e.g. the one containing the
axiom between the np~ coming from Peter and the first np in loves, and the arrow
(Peter:np™, lovesinp<s™ <np) of the order.
But if we do not write any order, we are able to derive, as well Peter Mary loves.
So if the spatial order has to do with the temporal order expressed by before,
it is in a more subtle way. Thus, looking forward a richer setting we thought of
associating an incomplete proof to each word. Then we noticed that a proof induces
a partial order on its axioms, and that having an axiom in the part of a proof, could
solve our problems. But the existence of such an order must first be established.

1.3.3 The solution: the order on axioms

Notation 6 Let o be an aziom link of a proof net. We write {at, a?} for its two
B-edges or formulae; thus (al)™ = a?.

Upper indices i, j,k, ... range over {1,2}.

Definition 7 Given two axiom links « and [of an ordered proof net we say that
a < B iff there exists i,5 € {1,2} and an R-arc from a formula F(a') to a formula
G(7) in the proof net, this R-arc either belonging to a before -link or to the order
on conclusions and cuts:

a g

F(a) G(67)

We write 4 for the transitive closure of <.

Definition 8 An £-path of a proof net 11 is said to be a before-only £-path when-
ever it remains an E-path in the proof net II' obtained by replacing ®-links with
p-links.

Remark 9 If o <3 because of a formula F(a') < G(’) then its defines a before-
only E-path from o to §7.

We have the following lemma, whose proof is in appendix:

Lemma 10 Let « and § be axtoms such that o € 3. Let n be the minimal integer
such that there erists arioms ap, 1 < p < n with:

a=agd..op_1da, =
Then we have:
i(p+1 j —
1. ap(p) (aﬁ,(p))

2. the union of the before-only paths corresponding to oy Qo 15 wself a before-
only path.

3. ol £ al wheni#j

Proposition 11 The relation 4 is a partial order on the axioms of a proof net.

Proof: As it is transitive by definition, we just need to check that it is anti-reflexive.
If we had o 4 « for some axiom «, then, by previous lemma, there would exists
a before only path from « to itself, not containing twice the same axiom: this is
impossible, as the axiom « appears twice in such a path. ¢

2 The linguistic model based on POMset logic and
an example of relatively free word order

For linguistic purposes the language will include as atomic propositions: lexical
categories, and a special constant S. In this section the material is minimal, but
gives the flavour of the next one on simpler constructions.

2.1 Words as modules, composition as plugging

Definition 12 A module is defined as a proof net, in particular they contain no
H-circutt. The only difference lies in the definition of a proof structure: in a module
some formulae or B-edges are the conclusion of no link. These formulae are called
the hypotheses of the module.

The lexicon provide each word or expression with a module: this module pos-
sesses a main formula, which i1s the underlined one in pictures. The type of the
word, which is closed to his Lambek type, is the dual of this main formula. The
module contains axioms, whose two conclusions are labelled either by the word or
by a word appearing in the expression, or by a variable.

The type of the word is of the shape ¢ ® (...¢7....), where g is lexical category,
like verb, adjective ... as soon as the word has a functional behaviour.

Here are word examples:

Pierre : np

Pierre

Kl an

Marie
np | np |

chanter
vmf] | vinf~

entend : v @ ((np < v < (np@vinf)) —) =vE ((np~ <v™ < (np~Pvinf~))PS)

Remark 13 This example is here to be a simple one, but it thus suffers from too
particular properties:

e we do not really need the vinf atomic proposition, this is just for stmplicity,
the solution for incorporating morphological information will be describe below.

e although modules can play totally symmetric role, this example gives the im-
pression that functionality is leaded by one of the constituents while it is not
always the case, see below.

But this example is convenient to illustrate the following properties, and to
compute all possible pluggings.

Definition 14 The plugging of two modules My and My is a module obtained by
identifying pairs (by,b2),b1 € M1,by € Ma of B-edges either satisfying:
e by is a conclusion of My and by an hypothesis of Mo

e by is an hypothesis of M1 and by a conclusion of M-

This is rather a communication by substitution than by cut, as opposed to
Lambek calculus style. Also notice the perfect symmetry between AM; and Mo,
quite different from, e.g. substitution in A-calculus: an hypothesis of M; may be
identified with a conclusion of M, and simultancously an hyptohesis of Ms with a
conclusion of M;. When parsing the example, there will be examples of pluggings.

2.2 The parsing algorithm
Assume we are given a sentence wj...wp, each word w; having the associated type

t; and the associated module M;.

1. Try all possible pluggings of the M;, in order to obtain a proof structure with
conclusions 7, ..., ¢, S.

2. Check whether the proof structure i1s a proof net.

10

3. Compute the order on axioms.

4. Check whether 1t 1s included in the linear word order of the actual sentence
Wi... Wp.

Before reviewing the advantages of such a method, let us try the example.
There are only two solutions, namely the following and the one obtained by
exchanging Marie and Pierre.
Marie chanter

Kl np

entend

P
np-

This is easily checked to be correct, because of proposition 4. What is the
order on axioms, i.e. the minimal order required by this analysis? It 1s Pierre <
entend, entend < chanter,entend < Marie but there is no requirement on the
relative position of chanter and Marie.

This means that the sentences Pierre entend Marie chanter and
Pierre entend chanter Marie are both recognised, and by the same syntactic anal-
ysis. If wondering what correct sentences may be constructed out of these four
words, one gets the two obtained by exchanging Pierre with Marie, and that is
all... and that is exactly what the correct constructions of a French perception verb
are.

2.3 Immediate outcomes

Even without sophisticated features needed to deal with more complicated phenom-
ena, we get several nice properties that the Lambek calculus lacks.

2.3.1 Getting rid of spurious ambiguities

A major drawback of the Lambek calculus is known as spurious ambiguities. Lam-
bek calculus allows any analysis, even the one pictured below by the brackets.

(Peters (eats an)) apple

Here the situation is somewhat different. We could get a bracketing correspond-
ing to the order in which modules, i.e. words, are pairwise plugged, but it does not
make any sense.

Plugging operation needs not be binary, and, moreover, once the proof net is
built, the syntactical analysis it provides does not reveal this information — this 1s
because proof nets are the parallel syntax for logic, [Gir95].

11

What remains, the subformula trees appearing in the proof net, indicates how
lexical categories are composed into syntactical constituents. But this bracketing,
like (Pierre (entend (Marie chanter))) is the one we fixed in the lexicon when
associating modules with words, and is precisely the one we want.

So, if within the Lambek calculus and its usual linguistic use, via provability,
there is a need of non-associativity, as developed by [MO94], when looking at the
proofs, there is no associativity: the associativity morphism is a proof interacting
with other to moves the brackets, but this proof does not have an empty content.

2.3.2 Relatively free word order

Notice how easily the previous example deals with relatively free word order, while
it 1s so difficult, in the Lmabek calculus to obtain the same syntactical analysis for
two constructions, where two contiguous constituents are permuted. In fact we are
able to do so at least for each such phenomena involving serie-parallel orders; see
e.g. [LTV82] — which precisely correspond to orders which may be described with
and <, see [Ret93, Ret95]).

2.3.3 Incremental strategy

Modules can be plug in any order, but it i1s natural to first try the order in which
they appear, preserving this nice property of categorial grammar. Nevertheless it
1s satisfying not to need to modify the system for dealing with distant interaction,
like in right or left extra position.

3 Extending the scope of categorial grammar

Because there is little room left, we shall just give the general principles, and an
example for some of the phenomena we’re able to deal with.

3.1 Principles

To describe more sophisticated phenomena, we also plug module through cuts the
analysis being the normal form of the proof net. We thus provide a linguistic
meaning of the most famous proof theoretical process.

We also use strings to label the atomic propositions occurring in the formulae
of the proof net.

When we plug two modules, either directly or via a cut, these variables get
instantiated.

When we take discontinuous constituents into account, the convention expressing
the relation between the temporal order and the word order is changed into the
following one.

The order on axioms induces a partial ordering over their extremities: if two
axioms « and § are such that o < 3, if o', a?, 3!, 32 are the end vertices of these
axioms, given u,v € {at, a? 31, 3?}, we say that u <€ v whenever there is a directed
E-path from u to v neither passing through « nor S.

The word order is correct whenever this order on axiom end vertices is included
within word order. For instance, in the following figure, dealing with French nega-
tion, we have: v~ < neg but neg™ and v are unordered.

After cut-elimination in such a case, we assume that the first component of
the label (here: <ne,pas>) instantiates the left end vertex of the axiom and the
second component instantiates the right one. This results in saying that the order:
ne_regarde < pas must be satisfied in the sentence.

12

3.2 Head wrapping: French negation in two pictures

REGARDE

(X:negtoX regardev’t)
©((np < v < YVineg < nplobj]) ® S*)

<ne,pas> P

(nemegt pne_regarde:vt)
©((np < v < pasmeg < nplobj]) ® S1)

4 Conclusion

These techniques are already extended to clitics, and extraposition, and their com-
bination, and we are thinking of improving and simplifying our description while
pursuing the description of other linguistic phenomena, e.g. idiomatic expressions.

On a computational perspective, Denis Bechet (INRIA-Lorraine), started im-
plementing these techniques, which contribute to automated deduction for linear
logic. Before reaching the linguistic parsing, one needs to implement proof nets,
modules, the correction algorithm and the « art of plugging modules ».

13

5 Appendix: Proof of lemma 10

Lemma 1 Let « and 3 be axioms such that o 4 3. Let n be the minimal integer
such that there erists arioms ap, 1 < p < n with:

a=agd...ap_14da, =3

Then we have:
i(p+1 i(p)y—
1. ap(p+) (aé(P))

2. the union of the before-only paths corresponding to oy Qo 15 wself a before-
only path.

3. ot £ ol wheni#j

Proof: We proceed by induction on n and for n = 1 it 1s clear — in particular, we
may not have a® 4a®.

Assume we have ag <ap_1 4@y < apq1 With n+ 1 being the minimal num-
ber of intermediate axioms. We a fortiori know that n is the minimal number of
intermediate axioms for having ag <a,_1 <9 @, and we can apply the induction
hypothesis to it.

Therefore proving the two following points is enough:
100D = (aé(”))—

2 the union of the two before-only paths P and P’ corresponding respectively to
g d....0n_1 4y, (which is a before-only path because of the induction hypothesis)
and to a, < any1 18 a before-only path.

3foralli<n+1,al £ant!

Let h, = F(a;(f)l) — G(aﬁ,(p)) be the R-arcs corresponding to ap_1 9 —

{i(p),y(p)} ={1,2}.
Proof of 1 If we had a;(n-l_l) = aﬂ(n) the two R-arcs hp41 and h, may not be
equal because of the direction of their arrows. Therefore 1s below another in the
subformula tree, or the target of h,, is the source of h,41 and there a R-arc h’ due
to transitivity of the order.

Xo

In both cases we thus have ay_1 < ap41; this conflicts with n + 1 being the
minimal number of intermediate axioms.
Proof of 2 From previous point we know that: a;(n-l_l) = (aﬁ(n))_ Let TFp41 and
TGpy1 be the subformula trees of Fi, 11 and Gy41.

14

AXn41

TFny1 TGrqr

i) = gitn)

hr

oyl — Grg1
Ang1

The before only path P may not pass through TF,41.

Consider the first B-edge of P in T'F,41. If it were an axiom af,i < n then we
would have a; 941, and this would conflict with n+ 1 being the minimal number
of intermediate axioms. If it were Fj, 41, letting of i < n be the axiom that P
encountered just before, we would have a; <, 41 and this would conflict with n41
being the minimal number of intermediate axioms.

The before only path P may neither pass through TGy 41.

Consider the last vertex of P in T'Gp41. If it were an axiom, we would have an
F-path from the tip of the arrow Fj,41 — Gpy1 to the leaf a;(n-l_l) of TF,41, and
thus an &-circuit. If it were G, 41, we would have an &-path from Fj, 11 < G,41 to
the leaf a;(n-l_l) of TF,41, and thus an &-circuit.

Therefore the before-only path P does neither pass through T'F, 11 nor through
TGn+1.

As the vertices of P’ all belong to T'F,, 41 or to TGp41 the union of P and P’ is
a before only path.

Proof of 3 Since the before only path P may not pass through T'F, 11, as estab-
lished in 2, a”t! £ o' wheni<n+1. o

Acknowledgements: Thanks to Philippe de Groote (INRIA-Lorraine) for helpful
discussions.

References

[Abr93] Samson Abramsky. Computational interpretations of linear logic. Theo-
retical Computer Science, 111:3-57, 1993.

[Abr91] V. Michele Abrusci. Phase semantics and sequent calculus for pure non-
commutative classical linear logic. Journal of Symbolic Logic, 56(4):1403—
1451, December 1991.

[Abr94] Michele Abrusci. Ecxhange connectives for non-commutative intuitionistic
propositional calculus. In M. Abrusci, C. Casadio, and M. Moortgat,
editors, Linear logic and Lambek calculus, Roma, 1994. DYANA.

[AD94] Andrea Asperti and Giovanna Dore. Yet another correctness criterion
for multiplicative linear logic with mix. In A. Nerode and Yu. Matiya-
sevich, editors, Logical Fundations of Computer Science, volume 813 of
Lecture Notes in Computer Science, pages 34-46, St. Petersburg, July
1994. Springer Verlag.

[Asp91] Andrea Asperti. A linguistic approach to dead-lock. Technical Report
LIENS 91-15, Dép. Maths et Info, Ecole Normale Supérieure, Paris, Oc-
tober 1991.

[Ber73] Claude Berge. Graphs and Hypergraphs. North-Holland, 1973.

[FR94] Arnaud Fleury and Christian Retoré. The mix rule. Mathematical Struc-
tures in Computer Science, 4(2), June 1994.

15

[dG95]

[Gir86]

[Gir87]

[Gir95]

[Gug94]

[Lamb8]

[LTV82]

[MK94]

[MO94]

[Moo94]

[Mor94]

[Ret93]

[Ret94]

[Ret95]

[Tro92]

Philippe de Groote, editor. The Curry-Howard isomorphism, volume 8 of
Cahiers du centre de logique, Unwversité catholiqgue de Louvain. Academia,

1995.

Jean-Yves Girard. Multiplicatives. Rendicontt del Semanario
dell’Unwversitd é Politecnico Torino, October 1986. Special issue on Logic
and Computer Science.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1-
102, 1987.

Jean-Yves Girard. Linear logic: its syntax and semantics. In J.-Y. Girard,
Y. Lafont, and L. Regnier, editors, Adavances in linear logic, London
Mathematical Society Lecture Notes. Cambridge university press, 1995.
Also in [dG95].

Alessio Guglielmi. Concurrency and plan generation in a logic program-
ming language with a sequential operator. In Pascal van Hentenryck,
editor, International Conference on Logic Programming, pages 240-254,
Genova, 1994. M.I.T. Press.

Joachim Lambek. The mathematics of sentence structure. American math-
ematical monthly, pages 154-170, 1958.

E.L. Lawler, R.E. Tarjan, and J. Valdes. The recognition of Series-Parallel
digraphs. STAM Journal of Computing, 11(2):298-313, May 1982.

Michael Moortgat and Natasha Kurtonina. Controlling resource manage-
ment. In M. Abrusci, C. Casadio, and M. Moortgat, editors, Linear Logic
and Lambek calculus, Roma, 1994. DYANA.

Michael Moortgat and R Oehrle. Adjacency, dependency and order. In
Ninth Amsterdam Colloguium, pages 447-466. ILLC, 1994.

Michael Moortgat. Multimodal linguistic inference. Bulletin of the IGPL,
3(2,3):215-246, 1994. Special issue on Deduction and Language, guest
editor Ruth Kempson. (to appear under the same title in Journal of Logic,
Language and Information)

Glyn Morrill. Structural facilitation and structural inhibition. In M. Abr-
usci, C. Casadio, and M. Moortgat, editors, Linear Logic and Lambek
calculus, Roma, 1994. DYANA.

Christian Retoré. Réseaux et Séquents Ordonnés. Thése de Doctorat,
spécialité Mathématiques, Université Paris 7, février 1993.

Christian Retoré. On the relation between coherence semantics and multi-
plicative proof nets. Rapport de Recherche 2430, INRIA, décembre 1994.
(and in LDPL’95).

Christian Retoré. Pomset logic: a non-commutative extension of linear
logic. Rapport de recherche, INRIA, September 1995.

Anne Sjerp Troelstra. Lectures on Linear Logic, volume 29 of Center for
the Study of Language and Information (CSLI) Lecture Notes. University
of Chicago Press, 1992.

16

