A Minimal Logic for Minimalism

Alain Lecomte and Christian Retoré
Alain.Lecomte@upmf-grenoble.fr
retore@irisa.fr

September 12, 1999

The third Thilisi Symposium on Language, Logic and Computation
Batumi, Georgia

1 Chomsky’s Minimalist Program

1.1 The Framework

According to Chomsky [1], language must be studied by taking his "legibility conditions’ as a starting point,
that means that we have to explain how it is constrained by our mental architecture and our sensorimotor
apparatus. In an ’ideal’ situation, words (or more precisely, lexical items) would have no other features
than those interpreted at the interfaces: properties of sound and meaning, and the ’computational system’
attached to the language would use these features and only these ones, no other element would be introduced.
But, as Chomsky says, we know that this is not the current situation and that there are some 'imperfections’
with regards to this ideal picture: commonly, phrases are interpreted in positions other than those where
they are heard, though in analogous expressions these positions are occupied, and interpreted under natural
conditions of locality (dislocation property), and there are uninterpretable features like Structural Case.
Of course, the situation would be nicer if we could reduce these two imperfections into only one: dislocation
would be caused by the need for deleting uninterpretable features. Chomsky expresses this idea in terms
of Suicidal Greed: features are attracted by attractors and attractors are deleted when they have attracted
their matching feature.

1.2 Minimalist Grammars

E. Stabler ([9], [10]) gives a precise formulation of the Minimalist Principles in his Minimalist Grammars.
In these grammars, he defines Merge and Move as operations between trees (Merge) or on trees (Mowve)
the leaves of which are labelled by lists of features. The goal of a derivation in this system is to delete all
the uninterpretable features. The whole derivation yields a tree where some leaves are simply labelled by
phonetic features and others by logical ones.

In these grammars, each item of the lexicon consists in a sequence of features, which are divided as follows:

e Phonetic features for example /speaks/,/linguist/,/some/,. ..
e Semantic features for example (speaks), (linguist),(some),. ..
e Syntactic or formal features:

— categorial features (categories) involved in merge:
BASE = {c,t,v,d,n,...}

— functional features involved in mowve:
FUN = {k,K,wh,...}

These sequences are described by the following regular expression:
LABEL = SELECT* (LICENSORS) SELECT* BASE LICENSEES P* [*

e P phonetic features

o [semantic features

e SELECT = {=b,=B,B=|b € BASE} select a category
e LICENSEES = {—x|x € FUN} needs a move feature

e LICENSORS = {+x, +X|x € FUN} provides a move feature

Merge is defined between two T-markers u and t the head of u starting with =x and the head t starting with
x with © € BASE. Let u' (resp. t') denote u (resp. t) in which the =x (resp. z) feature starting the head is
cancelled,

e if u is a lexical item then the resulting tree is u' < ¢' (so u' is the head and is on the left)
e otherwise the resulting tree is t' > ' (so v’ is the head in this case as well, but it is on the right)

Roughly speaking, movement is defined as follows: assume that at the leftmost position (spec* position)
we have a +x and that at the rightmost (comp™ position) we have a —x: then the movement takes the whole
constituent having —x as a head and moves it to the leftmost position (spec* position).

1.3 MP and Resource Logics

We think that Chomsky’s position may be better expressed in terms of a resource consumption logic. In
fact, Suicidal Greed may be formulated in a resource logic as: some feature consumes another one and after
deletes.

In this paper, we try to show how the two operations which are now fundamental in Chomsky’s view: Merge
and Move are very conveniently recast in logical terms. This has as a consequence that these two operations
no longer appear as the primitive operations: more primitive ones are arising. This is one of the advantages
of the logical analysis : to make objects decomposed in more primitive parts and recomposed by very simple
operations. Other researchers have presented works with a similar purpose, we may particularly notice
W. Vermaat ([11]) T. Cornell ([2]), and one of the authors ([4]). They are using the framework known as
Multimodal Categorial Grammar, in the spirit of [6]. In their approach, features are conceived like modalities
and components are assembled by means of various composition modes. We think that the introduction of
modalities and of the complex machinery associated does not pursue the goal of simplicity that we would
like to reach in order to express so primitive mechanisms. It is the reason why we do not use modalities
in our framework. That does not entail we should not use different composition modes provided that we
introduce the fewest as possible. We shall see that in fact two composition modes seem to be necessary but
one of the two remains implicit.

Vermaat’s system has been shown equivalent to the Stabler’s grammars. It is also the case for our system.

2 A logical analysis of Merge

The operation Merge is legitimated by the following observation: an object which already exists (either from
the lexicon or by previous construction) has some property which can only be satisfied by another object,
that will put these two objects together, and then, when the property is satisfied, we shall consider it as
?inactive”.

If we provisionally introduce here two connectives: ® and /, with rules given like in the Lambek calculus, we
can describe this fact in the following way.

2] Merge (2) : ¢/F,Feypt e

where e is associative and non-commutative. The proof is, in the sequent calculus:

pr¢ Py

FFF ¢ dey
¢/F,F,pF ey
¢/F,Fepl-gei

[Re]

[L/]
[Ls]

or, in the Natural Deduction style:

6/F (]
s pp
Fey Y

ey

[+ 1]

[oE]!

We can provisionally conclude that / and e are primitive (more primitive than Merge).

We know that, for logical reasons, we also have the connective \, in such a way that:

AeBFC& AFC/B
AeBFC & BFA\C

Of course, the \ operator is not superfluous. With the /, we were able to attach a syntactic object to the
right of another. If we follow the LCA convention (Kayne 94), that corresponds to the attachment of a com-
plement. Because it is assumed in this framework that trees are binary, if the head selects a new syntactic
object, it will be attached on the left, and therefore we shall have necessarily to use this \. That simply

duplicates the two rules for /, leading to analogous rules for \.

3 Phonological interpretations

According to Chomsky,

We understand L to be a device that generates expressions EXP, EXP=<PHON, SEM>, where
PHON provides the ”instructions” for sensorimotor systems and SEM for systems of thought.

If the ideal picture was the case we should have only expressions consisting in <PHON, SEM> pairs, but
uninterpretable features bring a third component so that we have: EXP=<PHON,UNINT,SEM>. In the

following rules, we only include phonetic features: they are considered labels.

AFB:A T,v:B,T'F6:C

AFB:A T)v:BT'F6:C

L
T,a:B/AA T+ blaB/y]C (/] [,A,a: A\B,T" + §[Ba/v]C
Ia:AB:BI'-C 'tra:A AFpB:B
[Le] [Re]
IaB:AeB,I'FC IAtaBf:AeB

F'Fa:A Az:AANFy:C

a: Ak a: Alaziom] [cut]
AT, A" Fy[a/z]: C
These rules can be restated as Natural Deduction rules:
'tz:A/B Aty:B AFy:B Thaz:B\A
[/E] \E

Al zy: A ATHyx: A

]

'Fa:AeB A;.’E:A;y:B;A'I—'y:C[E] 'rz:A At+=z:B
[]
A;T; A F y[a/zy)C IAFzy: AeB

o]

So, let us start with the following lexicon:

reads == Freads: ((k\vp)/d)
a x= Fa:((dek)/n)
book = | book :n

with k a formal feature (case) and d, n, vp categorial features (all these features being uninterpretable).
We can have the following derivation in order to build a new syntactic object:

F reads : ((k\vp)/d) :c:dl—a::d[/E]
Fa:((dek)/n) F book:n & x:dF reads z : (k\vp) y:kFy:k
Fa book : dek z:d,y:kF reads zy : (k\vp) ¢k
F reads a book : (k\vp) ek

[¢1]

[+E]

It is important to notice two things:

e in the lexicon, words are not associated with formulae (like it is the case in usual categorial grammars,
and notably in standard Lambek grammars), but with sequents: they are therefore considered extra-
logical axioms, which are labelled by the phonetic feature of the word itself,

e because e is non commutative, there’s no kind of move here. For instance, in the rule [¢E], a substitutes
for the concatenation of x and y, which label the types A and B, which are adjacent in the LHS of the
sequent and which can be neither permuted nor displaced.

4 A logical analysis of Attract+Move

Still according to Chomsky: attraction (hence movement) is driven by the need to delete an uninterpretable
feature F (we call it the attractor). Moreover, ’the attractor F in the label L of the target 8 locates the
closest F’ in its domain, attracting it to the multi-lexical item of F’. We can assume in our framework that
attractors occur as negative polarity items (F'\), attracted features as positive ones, and that the so called
Domain of F is the result of several merge steps, thus resulting in a sign like:

F\¢pre¢pre..0Fe. . 0¢,
but dislocation needs to relaz the order (o) of the hypotheses. For instance,
reads a book : (k\vp) ek

cannot be reduced.

This enforces us to introduce a second product, ® between types, which is commutative, the structural
counterpart of which being ’, (whereas the structural counterpart of e is ’;’). By doing so, we are working
inside the calculus pCLL (’partially commutative linear logic’) designed by P. de Groote ([3]). The two
products are able to communicate through the entropy rule:

I[(A1,A0)]F A

and we have the following ®-elimination rule:
l'ra:A®B Ajz:Ay:BkF~:C

[®E]
LAFA[a/{z,y}]: C

where y[a/{z,y}] means the substitution of a to the unordered set {z, y} that is the simultaneous substitu-
tion of a for both x and y, no matter the order between x and y is.
In this new framework, we can assume the following lexicon:

reads == Freads: ((k\vp)/d)
a x= Fa:((d®k)/n)
book = Fbook:n

and we may now build up a new syntactic object by means of the following derivation: [5]

Freads : ((k\vp)/d) z:dF=z:d

o = [/ E]
y:kFy:k x:dl—readsx:(k\vp)[\E]
Fa:((d®k)/n) F book:n y:kz:dFyreads z: vp
= [/ E] = [entropy]
Fabook:d®k y:k,x:dFyreads x:vp

[©F]
F a book reads a book : vp

We get an order in the label even if we have got through entropy. It is so because when using [/ E] and [\
E], we necessarily order the labels, and this order is then recorded inside the label and never destroyed, even
when using the entropy rule: at this moment, it is only the order on hypotheses which is relaxed. We obtain
a subsystem of pCLL by simply restricting the proof space to proofs which only contain some particular
kinds of step. Let us call MG-proofs those proofs. We have:

Definition 1 MG-proofs contain only three kinds of steps:
o implication steps (elimination rules for / and \)
e tensor steps (elimination rule for ®)
e entropy steps (entropy rule)

We can moreover assume:

Definition 2 A lexical entry consists in an axiom b w : T where T is a type:

((E\(F5\...(F\(G1 ® G2 ® ... @ Gy @ A))))/ FY)
where:
e m and n can be any number greater than or equal to 0,
o Iy, ..., F, are attractors,
o (41, ..., G, are features,
o A is the resulting category type

But that’s not all because we need to express the fact that ’the attractor F in the label L of the target
locates the closest F’ in its domain. This simply corresponds to the following restriction.

Definition 3 (Shortest Move) : A MG-proof is said to respect the shortest move condition if it is such
that hypotheses are discharged in o First In, First Out order.

5 Examples

5.1 SVO languages
Let us look at a very simple example, corresponding to an elementary sentence in a SVO language:

every linguist speaks some language

Before giving the proof, we give the lexicon which is used, together with the translation from Stabler’s labels
into MG-axioms.

entry Stabler' stype label : type

every =nd —k every every : ((k ® d)/n)
some =nd —k some some : ((k ® d)/n)
language n language language : n

linguist n linguist linguist : n

speaks =d +k =d v speaks speaks: ((k\(d\v))/d)
(tense) =v +k t ((k\t)/v)

(comp) =tc (t\c)

We begin by showing the proof in ND format, and by reversing the proof, we show that we get a tree
structure similar to T-markers. For reasons of size of the proof, it will be cut off into two pieces, the first
piece gives a reduction of

speaks some language

to v, and the second piece shows the continuation of the proof, by using the conclusion thus obtained.

speaks y'
k\(d\v))/d) 4!
1 ((x\(d\v))/d) UE]
some language $1 speaks y'
(k®d)/n) n UE| k (k\(d\v))
some language z! speaks y'
k®d (d\v)
! [©E]!
(some language)
y? speaks some language
a2 (d\v)

\E]
y? (some language)
speaks some language

v
And the continuation of the proof is :
y? (some language)
(?: tense speaks some language
((K\t)/v) v
[/E]
y? (some language)
every linguist zz speaks some language
(R®d)/n) n R ®\t)
— [/E] [\E]
every linguist z2 2 (some language) speaks some language
k®d t)
[®E]

every linguist every linguist
(some language) speaks some language
t

Let us see the tree we obtain.

ev lin ev lin (some lan) sp some lan

t
/\
[every linguist][z? y* (some lan) sp some lan]
k®d t
/\
A ‘BZ [y? (some lan) sp some lan]
(k®d/n) =n K (R\t)
- /[3/2(som\elan) sp some lan/
((R\t)/v) v
/\
12 [(some lan) sp some lan]
a? (d\v)
/.’E\lsptiaks gt
E®d (d\v)
/\
_ fi s_peaks yt
(k®d/m) n k (k\(d\v))
/\
speaks yt

((&\(d\v))/a) 4

Comments: a transitive verb like speaks has a categorial feature looking for a d on the right, and a functional
feature k (case) on its left. These two demands are satisfied by two hypotheses. By elimination of / and then
of \ (here analogous to merge), the labels of these hypotheses are incorporated into the verb. But it is only
in a second step that these hypotheses are discharged by means of elimination of ®. Because objective case
is weak, only the semantic part of the object is substituted to x!, and the content of the object is substituted
to y!, thus resulting in the node (some language) speaks some language : (d\v). The integration of tense (or
inflection) makes K to occur, and it will be cancelled (or checked) only by a new d requiring a case. But this
time, because nominative case is strong, the whole content of the subject is attracted to the highest position,
that means that the two variables x> and y? are substituted by the same content.

We may now call "move”, the kind of line we can draw in such a tree from a variable y? to a variable x?
which has the same index. The content that "moves” is determined by the content of the node which makes
possible to substitute the two variables.

The conventions for reading the result are:

e all strings not inside parentheses or slashes must be read at the same time as phonetic and semantic
features,

e any second occurrence of a string in the left-right order must be deleted (such an element is thought
of having been copied)

Following these conventions, the interpretative result at the root of the previous tree, which is:
every linguist every linguist (some language) speaks /some language/

gives us two interpretative forms:

e the phonetic form:

/every linguist//speaks//some language/

e the logical form:
(every linguist)(some language)(speaks)

5.2 SOV languages

The SOV word order is obtained by making a verb a strong case assigner (exactly like [9]). In this case, the
whole phrase some language is copied when using the product- elimination rule [® E], thus giving:

every linguist some language speaks
yielding:
e phonetic form: /every linguist//some language//speaks/

e logical form: (every linguist)(some language)(speaks)

5.3 VSO languages

VSO languages are more difficult to obtain because they involve head movement. Head movement implies
that categorial features too can be strong. In this case, in our setting, we duplicate the result category of a
functorial type, combining the functorial type with this duplication of the result category seen as a strong
feature by means of ®. The following lexicon gives an example (the resulting v is duplicated as V in the
verbal entry, in order to correspond with the strong V demanded by the inflection category). The translation
of Stabler’s lexical entries is therefore the following:

entry Stabler' stype label : type

Peter d —k peter peter : k ®d

english d —k english english :k ®d

speaks =d +k =d v speaks speaks:VQ ((k\(d\v))/d)
(tense) =V +Kt ((T® ((K\t)/v))/V)
(comp) =Tc ((c/t)/T)

An example of derivation :(we represent this tree in two parts)

/speaks/ peter /speaks/ peter (english) (speaks)/english/

C
_speaks yl peter y' peter (english) x' /english/
Ve ((k\(d\v))/d) c
/\
y! y?* peter z* peter (english) x' /english/
T® ((K\t)/v) c
/\
B /\yl y4 peter z* peter (english) x' /english/
(T (®\t)/v)/V) v (c/t) t

peter x* peter (english) x' /english/

t
T
_peter y3 xt x3 (e) z' Je/
k®d t
/\
v’ at 2® (e) 2t Je/
K (K\t)
/\
3 x* z3 (e) z! Je/
((K\t)/v) v
/\
23 (e) ' Je/
d (d\v)
/\
english y? ol 22
K®d (d\v)
/\
y_2 _xl z2
k (k\(d\v))
/\

In the result, repetitions are omitted, thus producing;:
/speaks//peter/(peter) (english) (speaks) /english/
thus providing the following PF and LF:
o /speaks peter english/

o (peter)(english)(speaks)

6 Conclusion

We present here a very simple logical system which does the same job as minimalist grammars do. It is a kind
of intuitionistic linear logic where two products are mixed: one is non commutative and is not directly used,
it is indirectly used via its residuates / and \, the other is commutative and is directly used for discharging
hypotheses corresponding to two different insertion points in a tree (T-marker) where some definite material
may occur. A simple algorithm is used afterwards to clean up the result thus making phonetic forms and
logical forms appear. It may be shown that such a system has the same generative power as minimalist
grammars (which have been proved to be mildly context-sensitive[5]), and that it is polynomial [8].

References

[1] N. Chomsky. Minimalist inquiries: the framework. Technical report, MIT, Cambridge, 1998.

[2] T. Cornell. A type-logical perspective on minimalist derivations. In G. van Kruijff and R. Oehrle,
editors, Formal Grammar’97, Aix-en-Provence, 1997. ESSLLI’97.

[3] P. de Groote. Partially commutative linear logic: sequent calculus and phase semantics. In M. Abrusci
and C. Casadio, editors, Proofs and Linguistic Categories, pages 199—208. CLUEB - University of Chieti,
1996.

[4] A. Lecomte. Categorial minimalism. In Moortgat [7], pages 143-158.
[5] J. Michaelis. Deriational minimalism is mildly context sensitive. In Moortgat [7], pages 179-198.

[6] M. Moortgat. Categorial type logics. In J. van Benthem and A. ter Meulen, editors, Handbook of Logic
and Language, chapter 2, pages 93—-178. Elsevier, 1997.

[7] M. Moortgat, editor. Logical Aspects of Computational Linguistics, volume 2014 of LNCS/LNAL
Springer, 2001.

[8] C. Retoré. Polynomiality of pcll limited to application rules. Technical report, IRISA, Rennes, forth-
coming.

[9] E. Stabler. Derivational minimalism. In C. Retoré, editor, Logical Aspects of Computational Linguistics,
volume 1328 of LNCS/LNAI, pages 68-95. Springer, 1997.

[10] E. Stabler. Remnant movement and complexity. Technical report, UCLA, Los Angeles, 1999.

[11] W. Vermaat. Controlling movement: Minimalism in a deductive perspective. Technical report, OTS,
Utrecht, 1999.

