
Learning Rigid Lambek Grammars
and Minimalist Grammars
from Structured Sentences?

Roberto Bonato1 and Christian Retor´e2

1 IRISA-INRIA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France
rbonato@irisa.fr

2 IRIN, Université de Nantes, BP 92208, 44322 Nantes Cedex 03, France
retore@irisa.fr

Abstract. We present an extension of Buszkowski’s learning algorithm for cat-
egorial grammars to rigid Lambek grammars and then for minimalist categorial
grammars. The Kanazawa proof of the convergence in the Gold sense is sim-
plified and extended to these new algorithms. We thus show that this technique
based on principal type algorithm and type unification is quite general and applies
to learning issues for different type logical grammars, which are larger, linguisti-
cally more accurate and closer to semantics.

1 Presentation

Learning lexicalized grammarThis papers deals with automated syntax learning, also
known as grammatical inference. The grammars we consider are lexicalized: their rules
are universal, do not depend on the language, hence a grammar is completely defined
by a map called the lexicon which associates to each word a finite set of objects, here
types, which define the word syntactic behavior. In such grammar formalisms, acquiring
a grammar consists in finding which types should be associated with a word in order that
the lexicon generates the examples (computational linguistics does not usually consider
counter examples). It should be observed that grammar formalisms that allow for a
learning algorithm are rare.

Gold model There are various models for grammatical inference. Here we follow the
model proposed by Gold [8]:identification in the limit from positive examples only.
According to this model, each time the learner meets a new example, she generalizes her
current grammar hypothesis to a grammar in the class which generates all the examples
met so far. The learning process is said to be convergent if, whenever the set of examples
is an enumeration of a language generated by a grammar in the class, the learner finds
the correct grammar after a finite number of examples.

? This work is part of the INRIAAction de Recherche Coop´erativeGRACQ, Categorial Gram-
mar Acquisition

Psycholinguistic aspectsIf one thinks, but this can be discussed, that a grammatical
learning algorithm should roughly follow what is known of human language acquisi-
tion, this model is rather accurate: indeed, as claimed by Gleitman, Lieberman or Pinker
in [7], it seems that only positive examples are used in the process of children’s first lan-
guage acquisition. Another fact that we do take into account is that learning proceed on
structures, and it is known that children use structures to learn (they are provided by
intonation, semantic contents etc.).

Nevertheless our kind of algorithm relying on generalization by unification departs
from the actual process of learning: children do not go through an increasing sequence
of languages till they reach the correct one, they rather go through languages which
hardly intersect the language to be learnt.

Tools for automated grammar constructionWe are presently implementing such algo-
rithms, using Objective CaML with a Tcl/Tk interface, and proceeding with XML files
for representing structured data — directed acyclic graphs which embed all the various
structures we are using. The learning algorithms are not too difficult to implement, and
rather efficient.

A positive point is that we are able to learn classes of languages relevant for natural
language syntax, which as far as we know, have not yet been addressed with respect to
learning issues. The algorithms are quite fast. Nevertheless this is due to the fact that
we learn from structures, but from structures which are too rich to be available from
corpora, even tagged corpora. However it is necessary to learn from structures; when
learning from plain strings of words nothing would prevent the grammar learnt from
generating sentences likeAdam ate an applewith the structure(Adam (ate an)) apple,
which is not what we are looking for.

Another positive point is that we deal with lexicalized grammar. The grammatical
words, which are the ones associated with the most sophisticated syntactic behavior are
in a finite, fixed number: pronouns, prepositions and such are not invented by speakers,
hence in a real application they should be already present in the lexicon, and the words
which remain to be learnt are always simple words like nouns, adjectives, verbs. This
advantage is minimized by the fact these grammars are not robust, and consequently
have a small empirical coverage.

Previous work This work mainly relies on the first learning algorithm for categorial
grammars of Buszkowski and Penn [4] which was shown to be convergent in the Gold
sense by Kanazawa [10] — we use the simplified version due to the first author [2].

In order to learn a class of lexicalized grammars with a hope to be convergent, one
has to bound the maximal number of types that the lexicon associates to a given word:
otherwise each time a new word is seen the algorithm could provide it with a new type
perfectly ad hoc for this particular sentence, and nothing would be learnt. The base case
obviously is when the lexicon maps each word to one type: such grammars are called
rigid grammars— and this limits their generative capacity.

The pioneering paper [4] provides an algorithm called RG for learning efficient-
ly rigid AB grammars from structures — where AB grammars is a class of categorial
grammars which only contains residuation rules. RG relies on a typing algorithm (an

easy adaptation of the principal type algorithm for simply typedλ-calculus) and uni-
fication (with was shown to be a general tool for grammatical inference by Nicolas
[16]).

Kanazawa [10] proved the convergence of RG, and extended the result in two di-
rections that can be combined. One direction was to learnk-valued AB grammars by
testing all the possibilities of unifying a type with one of thek types, and the other was
to learn from strings by trying all possible parse structures on a given string. The con-
vergence of these compatible extensions was shown, but the complexity of the learning
algorithms becomes hardly tractable.

Aims of the paperCompared to Kanazawa, we extend the RG algorithm in an orthogo-
nal direction: we moved to Lambek categorial grammars which are obtained by adding
two rules to the two rules of AB grammars, and, in the same style we moved to the richer
deductive system and grammar defined with Lecomte [13] which enables a represen-
tation of Stabler’s minimalist grammars [18] a formalization of Chomsky’s minimalist
program [5]. In both cases we wish to learn more realistic classes of languages without
losing the efficiency of the original algorithm. Furthermore the methods of Kanazawa
for extending our results tok valued grammars or for learning from strings probably
apply here as well.

Little is known regarding the class of rigid Lambek languages: all its languages are
context-free and some are not regular, but it does not include all regular languages —
learnable classes are always transversal to the Chomsky hierarchy [8]. We do think,
from the examples we tried, e.g. example 1 in the paper, that rigid Lambek grammars
are more expressive than rigid AB grammars — although when unrestricted both AB
grammars and Lambek grammars exactly describe context free languages. Regarding
minimalist grammars, we know that rigid minimalist grammars do contain non context
free languages like the languageanbncndnen (Stabler, private communication). Fur-
thermore minimalist grammars take into account sophisticated syntactic constructions,
and enjoy polynomial parsing.

As it well-known, learning is a cornerstone in Chomskyan linguistics. Language
acquisition is viewed as parameter setting in the universal grammar — hence few ex-
amples are needed to acquire the syntax. These parameters, like feature strength, are
explicit in minimalist grammars, and this could yield a more efficient learning strategy.

Another motivation is semantics. If the lexicon includes simply-typedλ-terms de-
picting word semantics, there is a straightforward mapping from syntactic analyses to
semantics [15]. As real learning makes use of some semantic information, the pos-
sibility to learn Lambek grammars should improve syntax learning from sentences
enriched with semantic information as suggested for instance in [19]. Although the
syntax/semantics interface is less simple for minimalist grammars [13], it is also com-
putable, and this interface could be exploited as well.

Regarding learning theory we think that the RG algorithm and the simple proof of
convergence of [10, 2] could lead to a general result on learnability which can be applied
to most type logical grammars.

2 Categorial grammars: BCG, LCG, MCG

In categorial grammars, the objects that the lexicon associates to words to rule their
syntactic behavior aretypes(also calledcategoriesor formulae):

Tp ::= Pr | Tp/Tp | Tp\Tp
The setPr is the set of base categories which must contain a distinguished categorys
(sentence) and usually contains categoriesnp (noun phrase) andn (noun), and possibly
vp (verb phrase),pp (prepositional phrase). Stated informally, an expressione is of type
B/A (resp.A\B) when it needs to be followed (resp. preceded) by an expressione′ of
typeA to obtain an expression of typeB.

Givena ∈ Σ (the set of words) andA ∈ Tp, we writeG : a 7→ A (G assignsA to
a), wheneverA is one of the types associated to the worda. If for all a ∈ Σ G assigns
at most one type toa, G is said to berigid .

Given a grammar/lexiconG, a sequence1 of wordsw1 . . . wn ∈ Σ+ is said to be
of typeT ∈ Tp whenever there exists for everyi in [1, n] a typeTi ∈ Tp such that
T1 · · ·Tn ` T , where` is the following relation between finite sequences of types and
types:

Definition 1. The binary relatioǹ betweenTp+ andTp is the smallest relation such
that, for all A, B ∈ Tp and allΓ, ∆ ∈ Tp+:

[ID] A ` A
[/E] if Γ ` A and∆ ` A\B, thenΓ, ∆ ` B (Forward application or modus ponens);
[\E] if Γ ` B/A and∆ ` A, thenΓ, ∆ ` B (Backward application, modus ponens);
[\I] if A, Γ ` B thenΓ ` A\B (\ hypothetical reasoning, introduction);
[/I] if Γ, A ` B thenΓ ` B/A (/ hypothetical reasoning, introduction);

As the` symbol suggests it is a deduction relation which can be depicted by natural
deduction trees.2

A [ID]

····
A/B

····
B

[/E]
A

····
B

····
B\A

[\E]
A

[B]····
A

[/I]
A/B

[B]····
A

[\I]
B\A

Note: in [/I] and [\I] rules the cancelled or discharged hypothesis is always the right-
most and the leftmost uncanceled hypothesis, respectively, and there must remain at
least one other uncanceled hypothesis.

The grammars defined using this deductive system are Lambek grammars (LCG)
from [12] while the ones which only use[\R] and[/E] are called AB (Ajdukiewicz Bar-
Hillel) grammars or basic categorial grammars (BCG) from [1] (see [3] for a survey).
The learning algorithms defined so far [4, 10] only handles BCGs.

1 As usual, given a setU , U∗ stands for the finite sequences of elements inU andU+ for the
finite non empty sequences of elements inU

2 The only difference with usual natural deduction is that the order of premises matters, and that
exactly one hypothesis is cancelled in an introduction rule. This can be observed from the fact
that, in the previous definition there are no ruleif Γ, A, B, ∆ ` C thenΓ, B, A, ∆ ` C and
no ruleif Γ, A,B, ∆ ` C thenΓ, A, B, ∆ ` C.

Example 1.
If one consider the rigid grammar/lexicon besides, then the

sentencesGuarda passare il treno((s)he is looking the train
passing by) andCosa guarda passare(What is (s)he looking
passing by?) belong to the generated language of the LCG.
With BCG, only the first one is generated.

cosa 7→ S/(S/np)
guarda 7→ S/np
passare 7→ vp/np

il 7→ np/n
treno 7→ n

The languages generated by AB categorial grammars exactly are the context-free
languages, and the languages generated by Lambek categorial grammars also are ex-
actly context-free languages. Nevertheless the LCG generate much richer structure lan-
guages than BCG, see below.

Minimalist categorial grammars (MCG) In [13] the minimalist grammars of [18]
have defined similarly, by using a lexicon which ranges over more sophisticated types.
There is no room to present there intuitively, but formally they can be defined a mere
variation of categorial grammars. The set of primitive categories is larger: it includes
primitive categories but also movement features, like case, wh etc. which can be strong
or weak3 Types are extended with a commutative and associative product:

Tpm ::= Pr | Tpm/Tpm | Tpm\Tpm | Tpm ⊗ Tpm

Instead of sequences of types, contexts are sets of types and the deductive system
is replaced with the following one, where every formula is labeled by a sequence of
words:4

[ID] x : A ` x : A
[AX] ` w : A wheneverw 7→ A is in the lexicon.
[/E] if Γ ` x : A and∆ ` y : A\B, then{Γ, ∆} ` xy : B
[\E] if Γ ` y : B/A and∆ ` x : A, then{Γ, ∆} ` yx : B
[⊗E] if ∆ ` u : A⊗B andΓ [{x : A, y : B}] ` t(x, y) : C thenΓ, ∆ ` t(x := u1, y :=

u2) : C with, depending onA eitheru1 = u2 = u or u1 = (u) andu2 = u.

The labels can be computed from the proof. The way to read them is a bit puzzling,
but agrees with the copy theory of minimalism. Every word sequencew has a phonolog-
ical part/w/ and a semantic part(w) and when they are superimposed, this is simply
denoted byw. The reason for this double sequence (semantic and syntactic) is to obtain
correct semantic representation in a parameterized view of language variation.

To read such a sentence, one should only keep the phonological part and forget items
which are met several times, the repetition being traces: for instancePetrus Mariam
amat Mariamis phonologically read as/Petrus/ /Mariam/ /amat/and semantically read
as(Petrus) (Mariam) (amat)while Peter (Mary) loves Maryis phonologically read as

3 For instance in VSO languages the accusative case provided by the verb is weak, while it
strong in SOV languages.

4 In fact if one wants a real logical system, then it is more complex. It involves structured con-
texts with a commutative comma and a non commutative comma, and the possibility to replace
non commutative commas by commutative ones. However a large part of this formalism can
be handled by the little system we give here.

/Peter/ /loves/ /Mary/and semantically read as(Peter) (Mary) (loves). If we consider
the assignmentsMary 7→ d ⊗ k andloves 7→ K\vp/d we obtain that(Mary) loves
Mary is avp, but if casek was strong we would obtain thatMary loves Maryis avp as
in SOV languages.

` Mary : d ⊗ k

y : K ` y : K

` loves : K\vp/d x : d ` x : d
[/E]

x : d ` loves x : k \ vp
[\E]

y : K; x : d ` y loves x : vp

y : K, x : d ` y loves x : vp
[⊗E]

` (Mary) loves Mary : vp

The grammar is said to generate a sentencew1 . . . wn whenever the lexicon contains
assignmentswi 7→ Ti such thatT1, . . . , Tn ` /w1/ . . . /wn/ : s. These grammars have
been shown to generate exactly the same languages as Multiple Context-Free grammars,
which go beyond context free grammars and even TAG languages. [9, 14].

2.1 Proofs as Parse Structures

As said above, parse structures are essential to a grammar system. As Tiede [20], we
define them asnormal proof trees that are proof trees in which an introduction rule
yielding A\B or B/A is never followed by an elimination rule whose argument isA.
Every proof tree can be normalized in linear time to a normal one, and there are finitely
many normal proof tree with the same hypotheses and conclusion.

Thus the structure underlying a sentencea1 · · · an ∈ Σ+ generated by a Lambek
grammarG is one of the finitely many normal proof trees of the deductionA1, . . . , An `
s, with G : ai 7→ Ai. Figure 1 displays the proof tree of the sentence ‘he likes her’ in a
grammarG such thatG : he 7→ s/(np\s), him 7→ (s/np)\s, likes 7→ (np\s)/np.

s/np (s/np)\s

s

her

(np\s)/np [np]

np\ss/(np\s)

likes

he
/E

/E

/I

s

\E

likes

he

/I

/E

/E

\E

her

[ID]

Fig. 1. Proof tree for a sentence and the corresponding proof-tree structure.

Given a Lambek grammarG, aproof-tree structureover its alphabetΣ is a unary-
binary branching tree whose leaf nodes are labeled by either[ID] (“discharged” leaf
nodes) or symbols ofΣ and whose internal nodes are labeled by either[\E], [/E], [\I],

or [/I]. Thus, a proof tree structure of a sentence is obtained from a proof tree by remov-
ing the types which label the nodes. We writeΣP for thestructure languagethat is the
set of proof-tree structures overΣ, andPL(G) for the (proof-tree) structure language
of G that is the set of structures generated byG. In order to distinguishL(G), the lan-
guage ofG, fromPL(G), its structure language, the former is called thestring language
of G. Theyield of a proof-tree structureT is the string of symbolsa1, . . . , an ∈ Σ+

labelling the undischarged leaf nodes ofT , from left to right in this order. The yield of
T is denotedyield(T). Note thatL(G) = {yield(T) | T ∈ PL(G)}.

By taking a proof tree as the structure of a sentences generated by Lambek gram-
mars, Tiede in [20] proved some important results about their strong generative capac-
ity. Firstly, a proof in the Lambek calculus is really a tree — as opposed to a proof in
intuitionistic logic. Indeed, as he observed there is no need to specify which introduc-
tion rule[I/] or [\I] did cancel a leaf in the course of a derivation: this information can
be reconstructed from the leaves to the root, since it is always the left the leftmost or
right most uncanceled hypothesis. Secondly, as opposed to a previous notion of parse
structures for Lambek grammars [3], not every bracketing is produced by the finitely
many normal proof trees which parse a given sentence. Thirdly, even though Lambek
grammars and BCGs both exactly generate context-free languages, the former can gen-
erate proper context-free tree languages while the latter, as context free grammars only
generate regular tree languages.

Parse structures for minimalist categorial grammars For the same reason we take
proof trees as parse structure for MCG. Observe that there as well subtrees correspond
to constituents.

3 Learning Framework: Gold’s Model from Structured Examples

This sections recalls the basic formal notions of the learning model we use, Gold’s
model of learning [8], also calledidentification in the limit from positive data. We are
given a universeT (for us the set of parse structures) and a classΩ of finite descriptions
of subsets ofT (for us categorial grammars), with a naming functionN which maps
each element ofΩ to the subset ofT that it generates. The learning question is given
a subsetS of T (positive examples), to find an elementG ∈ Ω such thatN(G) = S.
The learning function we are looking for is a partial functionϕ from finite sequences
of elements inT (or in S, since it is a partial function) toΩ which converges in the
sense of Gold: wheneverS = N(G) for someG ∈ Ω, then for any enumeration
(ei)i∈N of S, there exists anp ∈ N such that∀n > p one hasφ(e1, . . . , en) = G′ and
N(G′) = N(G).

Stated informally, we can think of a learning function as a formal model of the
cognitive process (successful or unsuccessful) by which a learner conjectures that a
given finite set of positive samples of a language are generated by a certain grammar.
The convergence simply means that after a finite number of examples, the hypothesis
made by the learner is a grammar equivalent to the correct one.

In Gold’s model, we will say that a class of grammars islearnablewhen foreach
language generated by its grammars there exists a learning function which converges

x 1

\E
x 2 x \ x2 1

x 1

\E
2x

x 1

x 2

\ I
x \ x1 2

\ I

1[x]

x 2,

Fig. 2.Typing rules

to one correct underlying grammar; it is calledeffectively learnableif that function is
computable.

4 An Algorithm for Learning Rigid Lambek Grammars

In the present section we describe an extension of Buszkowski’s RG algorithm [4] for
learning rigid BCGs from structured positive examples to rigid Lambek grammars, and
rigid minimalist grammars. We also sketch the first author’s convergence proof [2] in-
spired from [10].

4.1 Argument Nodes and Typing Algorithm

Our learning algorithm is based on a process of labeling for the nodes of a set of proof-
tree structures. We introduce here the notion ofargument nodefor a normal form proof
tree. Sometimes we will use the same notation to indicate a node and its type label,
since the graphical representation of trees avoids any confusion.

Definition 2. Let T be a normal form proof-tree structure. Let’s define inductively the
setArg(T) of argument nodes ofT . There are four cases to consider:

– T is a single node, which is the only member ofArg(T);
– T ≡ [\E](T1, T2), thenArg(T) = {Root(T)}∪Arg(T1)∪Arg(T2)−Root(T2);
– T ≡ [/E](T1, T2), thenArg(T) = {Root(T)}∪Arg(T1)∪Arg(T2)−Root(T1);
– T ≡ [\I](T1) or T ≡ [/I](T1), thenArg(T) = Arg(T1).

Applying the principal type algorithm fromλ-calculus to Lambek proofs, as in [20,
2], one obtains the following result on argument nodes:

Proposition 1. LetT be a well formed normal form proof-tree structure. If each argu-
ment node is labeled, then any other node inT can be labeled with one and only one
type.

This proposition allow to define the notion of principal parse:

Definition 3. A principal parseof a proof-tree structureT is a partial parse treeT of
T , such that for any other partial parse treeT ′ of T , there exists a substitutionσ such
that, if a node ofT is labeled by typeA in T , it’s labeled byσ(A) in T ′.

To compute in linear time the principal parse of any well-formed normal proof-tree
structure, provide argument nodes with distinct variables, and then apply the rules in
figure 2 (the/E and/I cases are symmetrical).

4.2 RLG (Rigid Lambek Grammar) Algorithm

– input: a finite setD of normalproof-trees (since all proof trees normalize)
– output: a rigid Lambek grammarG such thatD ⊂ PL(G), if there is one.

\E

/I

\E

a girl

\E

/E /E

\E

loves

him

passionately

[]

a girl

/E

loves /E

John,D={

{

Fig. 3.The setD of positive structured samples for RLG algorithm.

Step 1.Assign a type to each node of the structure inD as follows:

– Assigns to each root node;
– assign distinct variables to the argument nodes (see Fig. 4);
– compute types for the remaining nodes as after definition 3 (Fig. 5).

Step 2.Collect the types assigned to the leaf nodes into a grammarGF (D) called the
general forminduced byD. One hasGF (D) : c 7→ A if and only if the previous step
assignsA to a leaf node labeled by symbolc.

GF (D) : passionately 7→ x1\s him 7→ (x2/x5)\x1

a 7→ x3/x4, x7/x8 girl 7→ x4, x8

loves 7→ (x3\x2)/x5, (x6\s)/x7 John 7→ x6

/I

\E

a

girl

\E

/E
/E

\E

loves

him

passionately

[]x5

a
girl

/E

loves

/E

John
,

s

s

x1

x3

x4

x8

x6

x7
x2

\E

Fig. 4.SetD after labeling argument nodes.

/I

\E

a girl

\E

/E /E

\E

loves

him

passionately

[]x5 a girl

/E

loves /E

John
,

s

s

x1

x3

x4

x8

x6

x7

x2

\E

x /x3 4

x \x3 2

(x \x)/x3 2 5

x /x2 5
(x /x)\x2 5 1

x \s1

x \s6

x /x7 8

(x \s)/x6 7

Fig. 5.SetD after computing the label for every node.

Step 3. Unify the types assigned to the same symbol. LetA = {{A | GF (D) : c 7→
A} | c ∈ dom(GF (D))}, and compute the most general unifierσ = mgu(A). There
are various well-known algorithms for unification (see [11] for a survey), so a most
general unifier of a finite set of types can be computed in linear time. The algorithm
fails if unification fails.

σ = {x7 7→ x3, x8 7→ x4, x6 7→ x3, x2 7→ s, x5 7→ x3}

Step 4.Let RLG(D) = σ[GF (D)].

RLG(D) : passionately 7→ x1\s him 7→ (s/x3)\x1

a 7→ x3/x4 girl 7→ x4

loves 7→ (x3\s)/x3 John 7→ x3

Our algorithm is based on theprincipal parse algorithmdescribed in the previous
section, which has been proved to be correct and terminate, and the unification algo-
rithm. The result is, intuitively, themost generalrigid Lambek Grammar which can
generate all the proof tree structures appearing in the input sequence.

Theorem 1. LetϕRLG be the learning function for the grammar system
〈Grigid, ΣP , PL〉 defined byϕRLG(〈T0, . . . , Tn〉) ' RLG({T0, . . . , Tn}).
ThenϕRLG learnsGrigid from structures.

We have no room for the complete proof which can be found in [2], we only state
the key lemmas below. Given two non necessarily rigid LCGs, let us writeG @ G′

whenever there exists a substitutionσ such thatσ(G) ⊂ G′ — that is every type as-
signment ofG is a type assignment ofσ(G). Given a finite setD of examples, let us call
GF (D) the non rigid grammar obtained by collecting all the principal types associated
to the words by the examples.

1. Given a grammarG are finitely many grammarsH such thatH @ G.
2. If G @ G′ thenPL(G) ⊂ PL(G′).
3. If D ⊂ PL(G) thenGF (D) @ G.

4. If GF (D) @ G thenD ⊂ PL(G).
5. If RLG(D) exists andRLG(D) ⊂ G thenD ⊂ FL(RLG(D)).
6. If D ⊂ PL(G) thenRLG(D) exists andRLG(D) @ G.

Given these lemmas, it is not difficult to see thatD ⊂ D′ ⊂ PL(G) entails that
RLG(D), RLG(D′ exists andRLG(D) @ RLG(D′) @ G. Because of the first item
a correct grammar is necessarily met in finitely many steps.

WhenRLG is applied successively to a sequence of increasing set of proof-tree
structuresD0 ⊂ D1 ⊂ D2 ⊂ · · ·, it is more efficient to make use of the previous value
RLG(Di−1) to compute the current valueRLG(Di).

It is easy to see thatϕRLG can be implemented to run in linear time if positive
structured samples are in normal form. As said earlier both the principal type algorithm
for Lambek proof trees [20] and efficient unification algorithms [11] are linear.

Learning MCG Rigid minimalist grammars admit a similar algorithm RMG. Here are
the differences. To compute the principal type when an[⊗] rule is met, the subproof
sp with conclusionA ⊗ B should be typed after the other subproof has been typed,
hence the value ofA ⊗ B is known for typingsp. Whenever a set of examplesD is
included inPL(G) then there also exists a substitutionσ such thatσ(GF (D)) ⊂ G.
The unification of the collected types is more difficult, because the connective⊗ is
associative and commutative, but it has been shown by Fages that unification modulo
associativity and commutativity is decidable, even in the presence of other connectives
[11]; the difference is that there does not exists a most general unifier, but a finite set of
minimal unifiers(σi)i∈[1,p], and for at least one indexi0 ∈ [1, p], σ = τσi0 . We define
RMG(D) to beσi0 (GF (D)). Thusτ(RMG(D)) = τσi0 (GF (D)) = σ(GF (D)) ⊂
GF (D) and RMG(D) @ G. Thus the argument for the convergence of RLG also
applies to RMG.

5 Conclusion

Meanwhile we implement some algorithms in the family we presented in Objective
CaML with input as DAGs in XML, and interface in Tcl/Tk, we would like to address
the following questions:

– What is a good notion of structure for learning syntax from structures, that is a
notion of structure which yields good grammars, but is rather computable from
corpora?

– How can one automatically obtain parse structure from more realistic examples that
can actually be produced by taggers and robust parsers?

– How can we take Montague like semantics into account, first for Lambek gram-
mars, and then for minimalist grammars?

– What are the language classes of rigid grammars?
– Can we used the fact that types for minimalist grammars are of a given shape to

avoid associative commutative unification and bound the complexity?
– Does there exists a general result stating that every type logical grammars enjoying

certain properties is learnable from structures?

References

1. Y. Bar-Hillel. A quasi arithmetical notation for syntactic description.Language, 29:47–58,
1953.

2. Roberto Bonato. A study on learnability of rigid Lambek grammars. Tesi di Laurea
& M émoire de D.E.A, Universit`a di Verona & Universit´e Rennes 1, 2000. available at
http://www.irisa.fr/aida/aida-new/Fmembrerbonato.html.

3. Wojciech Buszkowski. Mathematical linguistics and proof theory. In van Benthem and ter
Meulen [21], chapter 12, pages 683–736.

4. Wojciech Buszkowski and Gerald Penn. Categorial grammars determined from linguistic
data by unification.Studia Logica, 49:431–454, 1990.

5. Noam Chomsky.The minimalist program. MIT Press, Cambridge, MA, 1995.
6. Philippe de Groote, Glyn Morrill, and Christian Retor´e, editors.Logical Aspects of Compu-

tational Linguistics, LACL‘2001, volume 2014 ofLNCS/LNAI. Springer-Verlag, 2001.
7. L.R. Gleitman and M. Liberman, editors.An invitation to cognitive sciences, Vol. 1: Lan-

guage. MIT Press, 1995.
8. E.M. Gold. Language identification in the limit.Information and control, 10:447–474, 1967.
9. Henk Harkema. A characterisation of minimalist languages. In de Groote et al. [6], pages

193–211.
10. Makoto Kanazawa.Learnable classes of categorial grammars. Studies in Logic, Language

and Information. FoLLI & CSLI (distributed by Cambridge University Press), 1998. pub-
lished version of a 1994 Ph.D. thesis (Stanford).

11. Claude Kirchner and H´elène Kirchner.Rewriting, Solving, Proving. LORIA, 2000. Book
draft available from http://www.loria.fr/˜ckirchne.

12. Joachim Lambek. The mathematics of sentence structure.American mathematical monthly,
65:154–169, 1958.

13. Alain Lecomte and Christian Retor´e. Extending Lambek grammars: a logical account of
minimalist grammars. InProceedings of the 39th Annual Meeting of the Association for
Computational Linguistics, ACL 2001, pages 354–361, Toulouse, July 2001. ACL.

14. Jens Michaelis. Transforming linear context-free rewriting systems into minimalist gram-
mars. In de Groote et al. [6], pages 228–244.

15. Michael Moortgat. Categorial type logic. In van Benthem and ter Meulen [21], chapter 2,
pages 93–177.

16. Jacques Nicolas. Grammatical inference as unification. Rapport de Recherche RR-3632,
INRIA, 1999. http://www.inria.fr/RRRT/publications-eng.html.

17. Christian Retor´e, editor. Logical Aspects of Computational Linguistics, LACL‘96, volume
1328 ofLNCS/LNAI. Springer-Verlag, 1997.

18. Edward Stabler. Derivational minimalism. In Retor´e [17], pages 68–95.
19. Isabelle Tellier. Meaning helps learning syntax. InFourth International Colloquium on

Grammatical Inference, ICG‘98, 1998.
20. Hans-J¨org Tiede. Lambek calculus proofs and tree automata. In Michael Moortgat, editor,

Logical Aspects of Computational Linguistics, LACL‘98, selected papers, volume 2014 of
LNCS/LNAI. Springer-Verlag, 2001.

21. J. van Benthem and A. ter Meulen, editors.Handbook of Logic and Language. North-
Holland Elsevier, Amsterdam, 1997.

