
Chapter 8

Towards a minimal logic for minimalist
grammars:
a transformational use of Lambek calculus

A. LECOMTE & C. RETORÉ

ABSTRACT. Many convergence points have been observed during the recent years between the
Minimalist Program and the program of Categorial Grammar, above all since the formalization
of minimalist ideas by E. Stabler. For instance, the Merge-operation is exactly like functional
application. Moreover the fundamental operation of feature-checking, which is at the basis of the
Move-operation, can really be depicted as a resource consumption procedure, something familiar
to so called resource conscious logics. This makes rise a deep interest in looking for a logical
formulation of minimalist grammars. Such an enterprise is not done for the sake of spurious
formalization. If we take the chomskyan framework seriously, it seems natural to assume that
UG consists in a very general set of principles that must be expressed in the most condensed
way, and that derivations are made of steps of a few different sorts exactly like it is the case in a
logic.

8.0.1 The convergence of the minimalist program and categorial gram-
mar

Both generative grammar and categorial grammar postulate the existence of a uni-
versal grammar. In generative grammar, this universal grammar is supposed to be
provided by a set of principles, now reduced to a small number, among which are:
the structure dependence principle, the Merge and Move operations, the Binding
principles, the Head Movement Constraint... Particular languages are obtained by
assigning values to so called parameters. Because of the evolution of the theory,
and notably the fact that moves are assumed to be always triggered by the opera-
tion of feature checking, these parameters are simply boolean values assigned to
the strength of features.
On the categorial grammar side, e.g. in Moortgat setting [8, 9], it is assumed that
UG is provided by a base logic, which puts together several connective families •i,
/i, \i, connected by communication postulates, and that only this set of postulates
may change according to the language to be learnt: the ground logic remains in-
variant, and is thus supposed to capture all the universal principles.

From our viewpoint, Chomsky’s conception is very appealing because of the
simple nature of the parameters which are postulated. The features by means of
which communications are established between the sentence constituants may be

83

Proceedings of Formal Grammar 1999
Geert-Jan M. Kruijff & Richard T. Oehrle (editors).
Chapter 8, Copyright c©1999, A. Lecomte & C. Retoré.



Towards a minimal logic for minimalist grammars: A. Lecomte & C. Retoré /84

seen as nodes in a net, and their relative strengths as connection weights, thus evok-
ing some connectionnist aspects, but Universal Grammar remains unclear. On the
contrary, the conception of UG in categorial grammar is very clear and appealing:
it is in fact natural to assume that a so general and abstract device may be seen as a
kind of logic, simply because logics study abstract symbolic systems, but language
variation seen as a changing set of postulates is not entirely satisfactory: it seems
hard to assume that a language is learnt by learning abstract postulates of this kind.
This motivates the attempts to conciliate the two approaches. What we aim to find
is a very limited set of rules that would be sufficient in order to give an account of
Merge and Move, and that would be sufficiently restricted in order to incorporate
at least some of the principles (like economy constraints), in such a way that there
would be no need for their independent formulation.
We assume in this paper that each item of the lexicon consists in a set of features,
which are divided as follows:

• Phonetic features for example /speaks/,/linguist/,/some/, . . .

• Semantic features for example (speaks),(linguist),(some), . . .

• Syntactic or formal features:

– categorial features (categories) involved in merge:
BASE = {c, t, v, d, n, . . . }

– functional features involved in move:
FUN = {k, K, wh, . . . }

8.0.2 Stabler’s minimalist grammars

In his paper Derivational Minimalism [10] and in the subsequent Remnant move-
ment and structural complexity [11], Stabler provides formal grammars which re-
alize the view of grammar expressed in the Minimalist Program. Lexical entries
are ordered sequences in:

LABEL = SELECT∗ (LICENSORS) SELECT∗ BASE LICENSEES P ∗ I∗

• P phonetic features

• I semantic features

• SELECT = {=b,=B, B=|b ∈ BASE} select a category

• LICENSEES = {−x|x ∈ FUN} needs a move feature

• LICENSORS = {+x,+X|x ∈ FUN} provides a move feature

The structures he is using are binary trees, with internal nodes labelled < or >
which indicates where the head of the (sub)tree is to be found. These trees can be
interpreted as ’T-markers’, that term being adapted from Chomsky (1955/75) —



85\ Formal Grammar 1999

structures which record the history of a derivation, including the transformational
phase (see also Cornell [4]).
In Stabler grammars, there are two kinds of merge, and one kind of movement,
and they are completely determined by the sequence of features at the head of the
T-marker. Merge is defined between two T-markers u and t the head of u starting
with =x and the head t starting with x with x ∈ BASE; let u′ (resp. t′) denote u
(resp. t) in which the =x (resp. x) feature starting the head is cancelled.

• if u is a lexical item then the resulting tree is u′ < t′ (so u′ is the head and is
on the left)

• otherwise the resulting tree is t′ > u′ (so u′ is the head in this case as well,
but it is on the right)

Roughly speaking, movement is defined as follows: assume that at the leftmost
position (spec∗ position) we have a +x and that at the rightmost (comp+ position)
we have a −x: then the movement takes the whole constituent having −x as a head
and moves it to the leftmost position (spec∗ position).

8.0.3 Why do we want a logical formalization?

Before stating the advantages that would bring a logical formalization, let us ob-
serve its naturality. There is a striking similarity between categorial grammar and
minimalist grammars:

• both merge and move, in the minimalist syntax, are governed by resource
consumption, which suggest a formulation within resource sensitive logics

• there is a clear parallel between function and head (or between argument and
non-head).

The first advantage of a logical formalization is a simplification which can be stated
as a radical lexicalization: both merge and move make reference to the tree struc-
ture and in particular to the head of the T-marker while a logical formulation of
rules should only depend on the roots of the trees: all structure under the root can
be erased.
Logic is also attractive because trees that we obtain in logic, which represent proofs
in a Natural Deduction system, can be easily translated into logical forms, an ob-
jective that is pursued as well in generative grammar as in categorial grammar. The
Curry-Howard homomorphism has often be used in this perspective. Indeed, in our
opinion, “pure” resource logic alone cannot describe language: language-specific
notions and the logic-based computing device have to be integrated as “harmo-
niously” as possible.



Towards a minimal logic for minimalist grammars: A. Lecomte & C. Retoré /86

8.0.4 Minimalist grammars within the Lambek calculus

We must here warn the reader that although we use Lambek calculus [7], we do
not use Lambek grammars (Lambek grammars are defined by m1 . . . mn ∈ L iff
for each i there exists a type Ti of mi such that T1 . . . Tn � S).
In our presentation, we will derive the start symbol of the grammar (here c) from
the types of the words, but we depart from the ordinary use of Lambek grammars
in viewing types as closed deductions rather than hypotheses1. There are therefore
no hypotheses, nor any order on hypotheses which depict word order. Actually,
word order is computed by means of labels propagation plus a small device (like
an automaton) which can erase phonological content after copying. Let us start, for
an example, from the following translation of Stabler types into Lambek formulas:

entry label type
every =n d −k every ((d ⊗ k)/n)
some =n d −k some ((d ⊗ k)/n)
language n language n
linguist n linguist n
speaks =d +k =d v speaks ((k\(d\v))/d)
(tense) =v +k t ((k\t)/v)
(comp) =t c (t\c)

where strings (like language, speaks and so on) represent labels for deductions
of the corresponding Lambek formulae.
For instance, to say that ((d ⊗ k)/n) is associated with some is to say that we
assume the closed deduction:

� some : ((k⊗ d)/n)

We use two steps in the computation:

1. logic (Lambek calculus) expresses constituents structure and head/non-head
relation ship

2. a simple automaton reconstructs strings out of the proof in the Lambek cal-
culus.

The game is to build a proof of c, using closed deductions associated with lexical
items. Out of the proof of c, in order to compute the word sequence, we propagate
labels. When starting, only the lexical items are endowed with a phonological
labelling. Then in “application rules” (or modus ponens, or residuation) the label
of the node is simply the concatenation of the two labels, but in product elimination

1A closed deduction is a deduction which uses no hypotheses. In Lambek grammars, we say
that types of words are hypotheses because they are displayed on the left-hand side of the deduction
relation expressed by one sequent. In T1 . . . Tn � S, T1 . . . Tn are hypotheses, from which S is
deduced. In our system words (= constants) are not associated with hypotheses, and therefore there
is no order on hypotheses like it is the case in Lambek grammars.



87\ Formal Grammar 1999

the label is duplicated or split into two parts according to the types. That’s where,
for instance the difference between strong case and weak case takes place. This
mimicks movements.
It should be observed that to consider the lexical items as closed proofs rather than
hypotheses allows us to consider as consecutive two hypotheses which are only
separated by lexical items. We thus avoid that movements cross each other, in
accordance with the Head Movement Constraint. Of course, that’s probably too
strong a constraint because we know that some movements can cross (a phrasal
movement can cross a head movement). It is the reason why we shall necessarily
have to extend our calculus towards some kind of mixed system.
For the time being, let us make these ideas more precise and let us state the product
elimination rule in the Gentzen natural deduction style2 :

∆ � α : X ⊗ Y Γ, (x : X), (y : Y ),Γ′ � t : C
[⊗E]

Γ,∆,Γ′ � [α/x, α/y]t : C

In our applications of this rule, ∆ will in fact be empty, Γ or Γ’ can also be
considered empty. Hypotheses are always labelled with variables.
Within the tree-like natural deduction à la Prawitz, this rule is stated as follows. Let
U and V be hypotheses (expressed by variables) and % and %′ be deduced without
any free hypothesis. When the rule is applied, both U and V are cancelled, thus
acquiring the i-index.

%···
U ⊗ V

%l U
i %′ V i %r···
C

[⊗E]i
C

All the phonological and semantical forms appearing in the
proof (but the lexicon items) are computed from the structure of the proof and the
lexical items. The fact that the labelling terminates is ensured by the fact that there
is no cycle when adding arcs from an eliminated product formula to the discharged
hypotheses in a wellformed natural deduction. As said above, following Stabler, we
denote the semantics of some expression within braces, and its phonological part
within slashes. When none of these parentheses occurs, this simply means that both
the semantics and the phonology lie at the same place. When reading the derived
string, the second time we meet a complete item, this should be considered a trace,
in conformity with the copy theory3. This allows a representational description as
opposed to a derivational one: that’s indeed what we are using here since logic
prefers static representations. From the linguist’s point of view, this amounts to
prefer an operation like Form Chain to Move. The strings we obtain are like:

2In fact, the precise substitutions depend on the characteristic weak or strong of the feature, here
X. If X is weak, only the semantical part of α is substituted to x: this will precisely be the work done
by the extra-logical device

3in case there are several items with the same phonological form, one should of course distinguish
them by indices, which is possible in our procedure but not needed in our little examples. (cf figure)



Towards a minimal logic for minimalist grammars: A. Lecomte & C. Retoré /88

every linguist every linguist (some language) speaks
some language

Such a sentence in a Stabler-like representation (which uses movement rather than
copy) would be:

(every linguist) /every linguist/ (some language)
speaks /some language/

which yields the logical form (correct quantifier raising)4:

(every linguist) (some language) (speaks ...)

and the phonological form:

every linguist speaks some language.

according to the following deduction that, for reasons of size we cut off into two
pieces. The first piece gives a reduction of speaks some language to v, and
the second piece shows the continuation of the proof, by using the conclusion thus
obtained.

y2

d2

some
((k ⊗ d)/n)

language
n

[/E]
some language

k⊗ d

x1

k1

speaks
((k\(d\v))/d)

y1

d1

[/E]
speaks y1

(k\(d\v))

x1 speaks y1

(d\v)
[⊗E]1

(some language)

speaks some language

(d\v)
[\E]

y2 (some language)

speaks some language

v

And the continuation of the proof is :

4to get the arguments of speaks correct, the verb should have been modelled with more details,
using a VP-shell and moving the subject out of it; this is not at all a problem but makes the example
even bigger.



89\ Formal Grammar 1999

every
((k ⊗ d)/n)

linguist
n

[/E]
every linguist

k⊗ d

x2

K2

∅: tense
((K\t)/v)

y2 (some language)

speaks some language

v
[/E]

y2 (some language)

speaks some language

(K\t)
[\E]

x2 y2 (some language) speaks some language

t
[⊗E]2

every linguist every linguist

(some language) speaks some language

t

Out of this example one can use Chomskyan explanation to cross linguistic vari-
ations: assume that the verb is in fact a strong case assigner, then not only the
semantics of some language would move but also the phonological features. We
thus would obtain:

every linguist every linguist some language speaks
some language.

which yields the semantical reading5:

(every linguist) (some language) (speaks ...)

and has the phonological form:

every linguist some language speaks.

8.0.5 A necessary extension

VSO languages are much more difficult to obtain, and in fact they cannot be ob-
tained in this fragment of the Lambek calculus. The reason is that necessarily such
a language involves a head-movement which crosses the phrasal movements, some-
thing which is forbidden by the present state of the calculus.
A suggestion to solve this problem is to use the special unary connective that M. V.
Abrusci [1] has introduced in non commutative intuitionistic linear logic without
exponential (N-LLI−), a system which is in fact a conservative extension of the
Lambek calculus 6.

From now on, we assume the connective ✄ associated with all the licensees and
only to them (not to the select features for instance), and we shall restrict ourselves
to some particular proofs in the space of all proofs: those proofs which enjoy the

5cf. previous footnote.
6But we shall also explore in a future work other solutions using partially commutative linear

logic, in the directions indicated by [5] and [2]



Towards a minimal logic for minimalist grammars: A. Lecomte & C. Retoré /90

property of what we call: move-admissibility, that is a property according to which
every hypothesis must be discharged as soon as possible in the dynamic of the
proof.
As a matter of example, let us see our translation of Stabler’s types for VSO lan-
guages:

entry Stabler′stype label : type
Peter d −k peter peter : k⊗ d
english d −k english english : k⊗ d
speaks =d +k =d v speaks speaks : V⊗ ((k\(d\v))/d)
(tense) =V +K t ((T ⊗ ((K\t)/v))/V)
(comp) =T c ((c/t)/T)

where capital letters denote strong select features, and functional features (like k)
are assumed to be affected by the exchange modality.
And we show an example of proof (in two pieces) under the form of a tree similar
to a T-marker. (cf. figure) In the result, repetitions are omitted, thus producing:

/speaks//peter/(peter)(english)(speaks)/english/

thus providing the following PF and LF:

/speaks peter english/

(peter)(english)(speaks)

8.0.6 Conclusion and ongoing work

We hope the reader to be convinced by the simplicity of this system which is
achieved by separating the hierarchical constituent structure and word order. Word
order results from movement in the Chomskyan tradition, and from reading this
structure with a simple automaton which takes into account more specific language
properties. Thus we can work within the pure Lambek calculus, and obtain struc-
tures which are extremely close to the T-markers used in the generative tradition.
Moreover, we shall demonstrate in future work that languages like cnvnsnon or
cnvnxnsnon can be generated in this framework and more generally, that it is
possible to prove an equivalence result between Stabler’s grammars and our ”New”
Lambek grammars, thus getting the generative power needed for mildly context-
sensitive languages.

Bibliography

[1] M. Abrusci. Exchange connectives for non commutative intuitionistic linear logic.
in Abrusci, Casadio, Moortgat (eds). Linear Logic and Lambek Calculus, DYANA
Occ. Pub., Rome-Utrecht, 1993.



91\ Formal Grammar 1999

/sp/ pet /sp/ pet (eng) (sp )/eng/

c

sp

V⊗ ((k\(d\v))/d)
y1 pet y1 pet (eng) x1 /eng/

c

y1

T⊗ ((K\t)/v)

((T ⊗ ((K\t)/v))/V)
y1

V

y4 pet x4 pet (eng) x1 /eng/

c

y4

(c/t)

((c/t)/T)
y4

T

pet x4 pet (eng) x1 /eng/

t

peter x4 peter (eng) x1 /eng/

t

peter

k⊗ d
y3 x4 x3 (e) x1 /e/

t

y3

K
x4 x3 (e) x1 /e/

(K\t)

x4

((K\t)/v)
x3 (e) x1 /e/

v

x3

d
(e) x1 /e/

(d\v)

eng

k⊗ d
y2 x1 x2

(d\v)

y2

k
x1 x2

(k\(d\v))

x1

((k\(d\v))/d)
x2

d



Towards a minimal logic for minimalist grammars: A. Lecomte & C. Retoré /92

[2] M. Abrusci & P. Ruet. Commutativity and non-commutativity. 1998.

[3] Noam Chomsky. The minimalist program. MIT Press, Cambridge, MA, 1995.

[4] T. Cornell. Derivational and Representational views of minimalist transformational
grammar. In A. Lecomte, F. Lamarche, G. Perrier (eds) Logical Aspects of Compu-
tational Linguistics, LACL97, LNCS-LNAI, 1582, Springer, 1999.

[5] P. de Groote. Partially commutative linear logic: sequent calculus and phase seman-
tics. in V. Abrusci and C. Casadio (eds) Proofs and Linguistics Categories, Proceed-
ings of the 1996 Roma Workshop. CLUEB, Bologna, 1996.

[6] Richard Kayne. The Antisymmetry of Syntax. Number 25 in Linguistic Inquiry Mono-
graphs. M.I.T. Press, Cambridge, Massachusetts, 1994.

[7] Jim Lambek. The mathematics of sentence structure. American Mathematical
Monthly, 65. pages 154–170, 1958.

[8] Michael Moortgat. Categorial type logic. In J. van Benthem and A. ter Meulen,
Handbook of Logic and Language, Elsevier, 1996. chapter 2, pages 93–177.

[9] M. Moortgat, ’Constants of Grammatical Reasoning’, to appear, CSLI, 1999.

[10] Edward Stabler. Derivational minimalism. In C. Retoré, editor, Logical Aspects
of Computational Linguistics, LACL‘96, volume 1328 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 1997.

[11] E. Stabler, ’Remnant Movement and Structural Complexity’, to appear, CSLI, 1999.
http://www.humnet.ucla.edu/humnet/linguistics/people/stabler/stabler.htm


