Pomset logic:
a non-commutative extension
of classical linear logic

Christian Retoré

retore@loria.fr  hittp:/ /www.loria.fr/ "retore
Projet Calligramme, INRIA-Lorraine & CRIN-C.N.R.5.
B.P. 101 54602 Villers lés Nancy cedex France

Abstract. We extend the multiplicative fragment of linear logic with a
non-commutative connective (called before), which, roughly speaking,

carresponds to sequential composition. This lead us to a calculus where
the conclusion of a proof is a Partially Ordered MultiSET of formulae.
We firstly examine coherence semantics, where we introduce the before
connective, and ordered products of formulae. Secondly we extend the
syntax of multiplicative proof nets to these new operations.

We then prove strong normalisation, and confluence.

Coming back to the denctational semantics that we started with, we
establish in an unusual way the soundness of this calculus with respect
to the semantics. The converse, i.e. a kind of completeness result, is
simply stated: we refer to a report for its lengthy proof.

We conclude by mentioning more results, including a sequent calculus
which is interpreted by both the semantics and the proof net syntax,
although we are not sure that it takes all proof nets into account.

The relevance of this calculus to computational linguistics, process cal-
culi, and semantics of mperative programming is briefly explained in the
introduction.

Introduction

Motivation. Linear logic [10, 36, 12] succeeds in modelling computational phe-
nomena because it is both a neat logical system and a resource sensible logic.
This explains its relevance to various areas like: (1) process calculi and eoncur-
rency, e.g. [1, 4, 18, 19, 25], (2) functional programming, e.g. [1, 14], (3) logic
programming, e.g. [17, 25].

In some situations non-commutative features would be welcome, to handle
phenomena like: prefixing or sequential composition in area (1), strategy opti-
misation in areas (2,3). In other areas these non-commutative features are even
necessary to obtain a logical model: for instance if one wants a logical description
of state manipulation as appearing in the semantics of imperative programming
[35] or if one wants a logical system corresponding to a categorial grammoar in
computational linguistics [20, 24].



Omne possible direction consists in leaving out the exchange rule, i.e. in work-
ing with non-commutative connectives, as in [2, 3], but it is then highly difficult
to also include commutative features, which are needed too.

Principles of the calculus. Ilere we ezxtend multiplicative linear logic with
a non commutative connective which is the only possible one according to
coherence semantics. This connective, called before <, 15 non-commutative
(A < B # B < A), self-dual (4 < B)t = A1 < B), and associative. Turther-
more, its semantical definition suggests considering n-ary connectives defined by
partial orders.

This led us to consider in [28, pp. 85-139], a calculus where the connectives
are linear multiplicative conjunction ®, disjunction g, and before <, and where
the conclusion of a proof is a partially ordered multiset of formulae. This article is
devoted to the syntax of proof nets for this calculus, which is a natural extension
of multiplicative proof nets enriched with the miz rule [8, pp. 277-278].

Results. We first describe the semantical construction which gave rise to this
caleulus, and next we turn our attention to the proof net syntax.

As usual, we first define proof structure, and only the proof structures en-
Joymg a global criterion are called proof nets.

The correctness criterion simply extends the usual one, in the style of [7,
pp. 193-194], but we give here a formulation which is new with respect to [28,
pp- 93-100], with edge bicoloured graphs, 1.e. In the style of [32, p. 8]. It is thus
immediate that this criterion may be checked in polynomial time: this makes the
proof net syntax a sensible syntax by itself.

We then define ent-ehimination, as three local graph rewriting rules. Once we
have proved that these rules preserve the correctness of the proof net, we very
easily get strong normalisotion and confluence.

Next we provide a denotational semantics for this calculus using the seman-
tics defined in the beginning, and prove that each proof admits a non-trivial
semantics preserved under cut-elimination. This is done by an extension of the
experiment method of [10, pp. 57—60]. In other words, we show that our calculus
is sound w.rt. this semantics, seizing the opportunity of a method which does
not rely on an inductive definitions of the proofs. We state a kind of converse, 1.e.
a kind of completeness result with respect to this semantics, but the proof which
can be found in [29, pp. 19-22], is too lengthy to be given here — as opposed to
the usnal case which is very simple, see [33].

Finally we briefly explain that the partial orders which correspond to the
n-ary connectives definable from the binary connectives exactly correspond to
series parallel orders — see e.g. [37]. The formulae corresponding to series-parallel
orders do not involve the times conmective, and the before connective corre-
sponds to series composition, while the par connective corresponds to parallel
composition.

We conclude by giving some more results that we obtained on this calculus,
mainly in [28, pp. 85-139], and then raise the difficult question of finding a



sequent calculus exoctly corresponding to these proof nets — a sound one, found
in [28, pp. 111-122], is briefly given, but we are unable to show that it takes all
the proof nets into account.

Relation to other studies in linear logic. Regarding non-commutative linear
logic, we succeed in having both the usual commmutative connectives par and
times together with a noncommutative connective, and to endow our calculus
with a simple denotational semantics.

But this caleulus is also a new approach for dealing with n-ary connectives,
here defined by partial orders. Regarding the unrelated attempt of [9, 7], we
succeed I giving the comnectives we define a denotational semantics, and a
sequent caleulns — even if it is not a complete one.

In fact, with respect to the two aforementioned trends, our main success is
to provide a simple computational meaning to our n-ary connectives and non-
commutative features. Indeed, the cuts, i.e. the computation to be performed, are
also involved in the partial order, and therefore a concurrent strategy is described
within the syntax itself. This fits in with the computational interpretation of
linear logic of [1] and is the starting point of the use [4, 5] and [26, 27] made of
this calenlus.

Computational meaning of before and of partial orders. As usual cut
links may be viewed as particular final times links, which allows us to make
them appear in the partial order. This partial order may thus be viewed as a
strategy for computing the proof net, which is described within the syntax itself.
This is a concurrent strategy, which simply consists in first evaluating the cuts
(i.e. the computations to be performed) according to this order.

Notice that our calculus relates to true concurrency rather than to COS5-like
caleuli where (P|@) = P.@ + @.P using the notation of [23].

Also notice that a cut between A p B and AL @ B1 reduces to a cut between
A and Al and a ent between B and B' that can be done in parallel, while a
cut between A < B and Al < Blreduces to a cut between A and AL which
is to be computed first and a cut between B and B' which is to be computed
next — the identity (A < B)' = AL < BL without swap, as opposed to [2, 3],
is needed to allow such an interpretation.

That is the reason why A < 17 is to be intuitively understood as sequential
composition, as shown in [4].

In the plain logical calculus the order only describes a strategy, since we can
forget (part of) it and still obtain a proof net. Nevertheless when there are proper
axioms modelling some “real world” constraints, as the order appearing in these
axioms merges with the order introduced by the proof net, we can no more forget
parts of the order, and we are thus able to model temporal constraints, like “A
ought to be done hefore 53”.

Applications. This work has already been used, on the basis of [28], to provide
some solutions or insights to the aforementioned fields:



In [4, 5] the authors consider proof nets as processes, and show that the
correctness of the proof net corresponds to freedom from deadlock. The connec-
tives are interpreted as follows: g parallel composition,  internal choice, and <
sequential composition.

In [26, 27] the author makes use of the caleulus to model by local means state
change in Imperative programming. For instance, a buffer of type A has the type
I(ALY < A): thus it forces that it first get something of type A (write), and then
produce something of type A (read).

In [15] the author suggests that in the proofsearch as computation paradigm
the order we have on the formulae, should force some subgoals to be proved
before some others.

In [21, 34], this calenlus is applied to categorial grammars — see e.g. [20,
24]. We seize the opportunity that this calculus is able to handle portial orders
instead of linear orders [2, 3, 20] to provide a logical treatment of linguistics
phenomena hitherto absent from categorial grammars, like relatively free word
order, gapping, head wrapping, as explained in [21, 34]. In such a grammar, the
lexicon associates each word with a partial proof net, which contains an axiom
labelled with the word. To analyse a sentence we must first make a complete
proof net with the parts corresponding to the words of the sentence, i.e. check
if the criterion holds (the consumption of the valencies is correct), and then
check whether the induced order is included in the word order of the sentence
(the order of the words is correct). Just to mention one example, we are thus
able to model correctly French perception verbs: in this grammar, both Pierre
entend Marie chanter et Pierre entend chanter Marie are recognised as correct
sentences, but, and that is the most important, they both come out with the
same analysis.

1 A guideline: coherence semantics

General framework Coherence spaces are a denotational semantics tightly
related to linear logic, as explained in [10, 36, 12], and in particular to its proof
net syntax [10, 33, 29]. Actually linear logic was even discovered through this
semantics, which belongs to the world of stable semantics, introduced in [6] and
which incorporates more computational behaviour than plain Scott semantics.

A coherence space A is a simple graph, i.e. a set endowed with a symmetric
and anti-reflexave relation. The vertices are called tokens, and their set 1s called
the web of the coherence space A, denoted by |A|. Given two tokens a,a’ € |A],
write a~a’[A] for a and a’ are adjacent, or strictly coherent, and awa’[A4] for
a and a’ are neither adjacent nor equal, i.e. are strictly incoherent.

A clique of a coherence spaces is a set of pairwise adjacent vertices or co-
herent tokens. A linear morphism or linear map from a coherence space A
to a coherence space B, is a relation £ € |A| x | B| satisfying:

V(a,b),(a ) €f (a=d = (b=¥Vb-¥[B]) A (a~da'[A] = b~¥[B])
Linear morphisms compose as relations, and coherence spaces with linear mor-
phisms form a category. Let us write A = B whenever there exists a canonical



linear morphism from A to B and one from B to A, one being the inverse of the
other.

The interpretation of the different levels of linear logic within coherent spaces
proceeds as follows:

‘ Syntax | Semantics

formula I’ | echerence space also denoted by F¥
propositional variable « | arbitrary coherence space o

(n-ary) connective | (n-ary) operation on coherence spaces

proof of a formula I7 | clique of the corresponding coherence space I

proof of a sequent A+ I | linear morphism from A to I#

normalisation of a proof | equality of the corresponding clique(s)

Figure 1

As usual a proof of a sequent is interpreted as the proof derived from it by
replacing the left and right commas with the corresponding connectives, ie. a
proof of A1 @ @ An - B1 g+ - @ Bp. Furthermore, given two coherence spaces
A and B, there exists a coherence space A — B = A ¢ I3, to be defined next,
whose cliques correspond to linear morphisms from A to 3.

Introducing before as the non-commutative multiplicative connective
As shown in Figure 1, the first step towards such a semantics is to interpret the
formulae.

Omnce the interpretation of propositional variables is set, we just need to
have an n-ary operation (more precisely, an n-ary functor) interpreting each n-
ary connective. For instance linear negation, the unary connective (.. )L, is the
idempotent contravariant functor defined by:

A'l is defined by |AL| = |A| and a~a’[A'] whenever awa’[A]

£t ={(b,a) € |B| x |A4] / (a,b) € £}

Among the connectives, the ones that map n coherence spaces 4;,..., 4, on
a coherence space whose web is the Cartesian produet [A1] X - - - [A, ]| are said to
be multiplicative connectives. 5o linear negation is a unary multiplicative con-
nective. A connective is said to be positive whenever as a functor it is covariant
in all its argument. With the help of the (contravariant) linear negation, they
are the basic connectives from which the others may be defined as short hands.

Let @ be a positive binary multiplicative connective. To define 1t we must
specify according to the coherence of @ and &’ (in A}, and to the one of & and
¥ (in B) the coherence of two pairs (a,b) and (@', &). This can be pictured m
a 3 x 3 array, but if 2 is positive, all the 9 cases are a priori filled in, but two,
which are w0~ and ~Ow (Figure 2). From this array, we observe that there only
exist four binary multiplicative connectives positive in both their arguments, the
two commutative ones being well-known, as shown in Figure 3.



AQB B The multiplicative (positive) binary connectives

w | =] ~ J?h‘h@v‘conunutativeﬁmtation’ name
I R a2 ~ yes Apl par
A= ~ |=| ~ o | o yes A DB times
~ "?“ i | no A< B before
Figure 2 v |~ no B «< A "reverse before"
Figure 3

LRegarding the two commutative connectives, they are known to be assoclative
and to enjoy the De Morgan laws, which turn one into the other: (A®@ B)1=Atp
Bt and (Ap By'=A' @ BL. What are the corresponding properties of before,
and what is its relation to its commutative companions? A mere computation
shows that:

Propositionl. The before connective is:

— non-commutative A< BZ B< A

— self dual (A< B}t = At < Bt

— assoclative A< (B<C)=(A<B) < C

— regerding linear implication il lies In between par and times, i.e. there exists
a cononical linear morphism from A® B to A < B and one from A< I} to
ApB. — the relotion(s} defining these linear maps simply being the identity
relation: {((a, b), (a,8))/(a,b) € |A x B[}.

Notice that coherence according to before may be defined in a lexicographic
manner: (a,b)~(a’, ¥)[A< B] it (a~a'[A]A b = ¥)V b~b[B]. This suggests in-
troducing the following n-ary multiplicative connectives: let (A;)(:ery be a family
of coherence spaces ordered by a partial order u, written Ax < A;[u]. We define
the ordered product of this ordered family as the coherence space [ [, A; whose
web is the Cartesian product of the webs of the Ay’s — |[ [, Ai| = 41| x ... x|Ax]
— and whose strict coherence is defined by:

(a1, ... an)~(ay, ... ap) M1, A:] #ff 38 aiaf[As] AVA;>Au] ay=af
Notice that [, A, B=Ap B while [[,.p A, B=A<B.
The next sections present proofs whose semantical interpretations will be
cliques of these ordered products of coherence spaces.

2 Language and sequents

Without any further structure on the conclusions of a proof, or sequent, there is
no way to introduce this non-commutative connective before— there are only
two possible multiplicative rules, which are the usual rules for times and par of
linear logic.



As it is suggested by the semantics above to work with partially ordered
multiset of formmlae, let us look for a logical calculus whose conclusions will be
ordered multisets of formulac of F =P | FL | Fp F | F< F | F @ F, where
P is a set of propositional variables.

On the set F of formulae, we have the following De Morgan laws:
(A=A (ApByl=At @Bl (A< B)yl=Al <B' (A9 B)l=AlpBL.

Therefore, as is nsual in the theory of proof nets, we shall only consider
formulae up to De Morgan equivalence. Indeed, each formula of F has a unique
representative I the following set of formulae:

M=P|PL | MpM|M<M| MM
Consequently, we shall only consider formulae of A, and F* should be under-
stood as the unique formula 7/ of M which is equivalent to the formula (7)1
of F.

Another familiar property underlined by proof nets, is that a cut may be
viewed as a times K ® K1 between the two dual formulae K and K1 that
vanish in a cut rule.! Ilere we shall use this view of cuts as times formulae to
keep a track of these cuts: thus the partial order on the formulae of a sequent
may also involves the cnts, i.e. the computations to be performed.

The conclusion of a proof will be a partially ordered multi-set of formulae
and cuts written:

FA1,...,An, GY,...,Gplu] with:

— A1, .y Ap being formulae of M
- =X ®X{,..,Gp= X, ® X;', being cuts — where Vi € [1,p] X; € M.
— u being an order on the multiset {A4, ..., An, G}, ..., Gp} C M

We now define a proof syntax dealing with such conclusions, in the proof net
style, because this calculus is a simpler extension of the proof net syntax than
of the sequent syntax.

3 Ordered proof nets

In this section we introduced ordered proof nets in the framework developed
in [32] for the usual multiplicative caleulus, by extending the definition of a
RE&B-graph to the directed case.

We first present ordered proof structures from a kind of sub-formula trees,
R&B-trees — this is the most intuitive definition — | and then define them 3 la
Girard with links, — and that will be more convenient for the proofs in the next
sections.

Directed R&B-graphs A R&B-graph ¢ = (V; B, R) is an edge-bi-coloured graph
such that:

! T be more precise, we should apply some second order existential quantification to

this times formula to cbtain 3X.X @ X1 which is equivalent to L.



— ¥ is a set of vertices
— R is a set of ordered pairs (z,y) € V? such that z # y — in case we have
both (z, y) and (y,2) In R we speak of the R-edge z — ¥; in case we have
(z,y) € R and (y,z) € ¥ we speak of the R-arc z = y.
— B is a set of ordered pairs (z,y) € V2 such that
¢ 2 #y— noloop
e (2,y) € B = (y,2) € B — B s a set of edges, as opposed to arcs, and
the B-edge {(z,y), (y, 2)} will be simply denoted by z — y
¢ Vzdly (z,y) € B — B is a perfect matching of the full graph including
B and R edges

These R&B-graphs clearly can be pictured as edge-bicoloured graphs with
vertices V' in which B-edges are Bold (or Blue), an R-arcs or R-edges are Regular
(or Red). In a R&B-graph, an alternating path p of length n from z; to 2z, is
a sequence of n consecutive arcs p = (%o, #1)(#1,%2) - - (#n_1, n) alternatively
in B and in R, that is to say (zs_1,%:i) € 8= (%5, 2541) € B and (2_1,%3) €
B = (2;,2:41) € l. An alternating path is said to be elementary, whenever no
vertex appears more than twice in its formal expression. In this case we speak of
an &-path.In case g = 2, and n s even we speak of an alternating elementary
cireuit, e=cireuit for short.

Ordered proof nets as directed R&B-graphs

Definition2. Given a formula €', we defines its R&B-trees as edge bicoloured
graphs.? Tor every formula €| the discrete graph consisting of a vertex C° is a
R&B-tree of €| with root €, and leaf C. If €' is a non atomic formula, namely
C =Ax* DB with + € {p,®, <}, and if T(A) and T(B) are respectively R&B-trees
of Aand BB, then T'(A) * T'(13), defined in Figure 4, is a R&B-tree of €', with root
C, and both the leaves of T'(A) and T(B) as leaves.

c° T(A) g T(B) TAY <T(B) T(A) @ T(DH)
T(A) T(B) | T(A) T(B) | T(4) T(B)

A B A B
P

o ApB A< B AQB

Figure 4

Thus each vertex of a R&EB-tree T(C') of a formula C, is labelled with a sub-
formula of €', or with a connective. Notice that only the labels of the leaves are
needed to reconstruct all the labels of a REB-tree.

? They are neither trees not R&B-graphs; but they lock like truncations of the sub-
formula tree, and there is at most, instead of ezactly, one B-edge incident to a vertex.



Definition3. A proof structure with Cy,...,Cn, GY, ..., G} as conclusions and
ents — thus G = X; @ Xi' — with order u on its conclusions and cuts is a
R&B-graph which consists of:

— a family of R&B-trees T(Cy), ..., T(Cy), T(X1)@ T{XL), . .. ,T(Xp)@;T(Xj;L)
where T'(X) denotes a R&B-tree of X . This part represents the syntactic forest
of the sequent Cy,...,Cn, X1 @ X, ... X, @ X1

— a family of B-edges, called azioms, each of them linking two leaves being
the negation one of the other, in such a way that for each leaf there exists
exactly one axiom incident to it.

— a family of R-arcs, representing the order, 1.e. there is one such R-arc from a
conclusion or cut X to another ¥ whenever X < ¥ [y

— a special mark, ¢, on the roots of the T((;) to make a distinction between
a cut and a conclusion X @ X' which is not considered as a cut.

b_L

(29 D)8 12) 8 14

Conclusion(s) I': C1=a Cz=(c<al)pe
Ca=b Cs=tlp(ctplai)
Ca=el Cs=iltpat
Cut(s) 2: G} = (b <(a® ))& (b< (apc))
Orderon 'U 2 Co <Gy ;G < Cs ;U5 <y
Figure 5

Now, as nsual, not every proof structure corresponds to a proof, but only the
proof nets:



Definition4. A proof net is a proof structure which contains no a-circnit. 2

The example of figure 5 is a proof net but if the conclusion Cs = & p (¢t p
(a ® 1)) were to be replaced with C% = bL < (¢! p (a ® i)}, there would be an
a-cireuit: [B] —5 [b]2a[<] =5 [b* < (¢! p (6 ®19))] =5 [p] —r [¢'] =5 [c] —=
[®] =5 [at @ c] = [<] —a [p* < (et @ )] m [b<(ap c)] = [<] —= [}]

Ilere is an important proposition, albelt easy, which means that the proof
net syntax is a sensible syntax by itself:

Proposition5. There is ¢ polynomial {cubic} algorithm which checks whether
a proof structure is a proof nel.

Proof. Let X and Y be two vertices in a given proof structure. Checldng whether
there exists an a-path from X to ¥ starting with its unique incident B-edge is a
standard breadth search algorithm. Each B-edge is visited once in each direction,
and it is thus quadratic in twice the number of B-edges, 1.e. In the number of
vertices (the B-edges are a perfect matching of the graph). If we take ¥ = X and
repeat this for any vertex X, we get a enbic algorithm which checks the absence
or presence of a-circuit.

Let us now define the links of the ordered proof structures, i.e. the bricks they
are made of, and their premises and conclusions. A #-link, with * € {®, p, <} is
the R&B-graph on four vertices A, I3, %, A+ I3, which appears in figure 4; A and
I? are said to be its premises, and A * I} is said to be its conclhision. An axiom
link is an axiom, i.e. a B-edge whose end vertices are A and AL. This link has
no premise and two conclusions, namely A and AL. An ordered proof structure
may also be defined as a set of links such that each formula is the conclision
of exactly one link, and the premise of at most one conclusion, plus a family of
R-arcs which is an order between conclisions, i.e. hetween the formulae which
are not the premise of any link.

4 Cut elimination

We now define cut-elimination as a local graph rewriting system which turns a
proof net into a proof net, in such a way that the restriction of the order to the
conclusions is preserved under cut eliminalion. A cut is a t imes link between two
dual formulae K and K. Each of the formulae K and K1 is the conclusion of
a unique link, say & and kL. There are three elementary steps of cut elimination
to be described, according to the nature of the links & and &*:

AX/7 kork'isan axiom link
BF/BF k and k' are before links
TS/PAR k is a times link and k1 a par link.
? Beware that the adjective elementaryin alternating elementary circuit is necessary.

For instance, there exist proof nets of the usual multiplicative calculus, hence of this
extension that we are presently defining, which contain alternating circuits.



The ax/?7 elementary
step Ilere is the picture of
this elementary step. The
vertex X; (resp. Y}) is a
conclusion or a cut which
i1s, according to the order
between conclusions and
cuts, below (resp. above)
the cut we are reducing
and there may be several
such conclusions X; (resp.
Y;). We first suppress the
axiom link and then the
cut/times link and its inci-
dent R-arcs. We then iden-
tify the vertices labelled
with A.

The order on the conclu-
sions and cuts in the reduct
simply is the restriction of
the order in the redex to
the remaining conclusions
and cuts.

The BF/BF elemen-
tary step Ilere is the
picture of this elemen-
tary step. The vertex X;
(resp. Y;) is a conclu-
sion or a cut which is,
according to the order
on conclusions and cuts,
below (resp. above) the
cut we are reducing,
and there may be sev-
eral such conclusions Xj;
(resp. Y5).

In the order, the cut e
is split into two cuts e
and e3 with e1 < eg
which occupy the place
of e

Proof Net ; Order

W EDE D

I
I
I
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E I
X |
I
I
_________________ I
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The T5/PAR elemen-
tary step Ilere is the
picture of this elemen-
tary step. The vertex X;
(resp. ¥5) is a conclu-
sion or a cut which is,
according to the order
on conclusions and cnts,
below (resp. above) the
cut we are reducing,
and there may be sev-
eral such conclusions X;
(resp. ¥j).

In the order, the cut
¢ is split into two cuts
*; and e, unordered,
which occupy the place
of e,

Proof Net ; Order

HEoE=

Proposition6. The elementary steps AX/7, T3/PaR, end BF/BF preserve the
absence of &-circuit, as well as the order between the remaining conclusions and

cuts.

Proof. The last part of the statement iz obvious for all elementary steps, from
the ITasse diagrams of the orders of the redex and the reduct.

Let us call I7 the original proof net and II* its reduct. We now show that if
II containg no a-cirenit, so does I’ for each elementary step.

AX/7 Observe that any &-path in the reduct defines an #-path (whose endings

~ have the same colour) in the reduct.

BF/BF Let I~ bethe part of 77 which is common to I’ and let n’ the subgraph
of IT’ consisting in the two B-edges 1 and 2 incident with e! and 2, and their
adjacent R-edges. We assume there is an &-circuit in I7*.

1. If it uses the R-arc ¢! — 2, then it uses:
— (either the R-edge from A to 1 or the R-edge from AL to 1), and
— the B-edge 1, the R-arc ! — ?  the B-edge 2, and (either the R-edge
from B to 2 or the R-edge from B! to 2).
Because I7 is a proof net, I~ can contain neither any &path from I3 to
A, nor one from BL to AL, nor one from B to AL, nor one from B to
A. Ilence there is no a-circnit using ¢1 — o2,
2. If it uses an R-edge from some X; to ¢! or &2, there should be in I7~ an
a-path from a vertex of n' to X, but this is impossible because IF is a

proof net.



Lor o2 to some

3. Tor a symmetrical reason, 1t cannot use an R-edge from o
Y;.

4. Tlence it can not nse the B-edges 1 and 2, nor their adjacent R-edges and
arcs, i.e. it can only use the R-edges A— AL and B— B1. Because I is a
proof net, it is obvious that it cannot nse only one of these two R-edges.
For the same reason, I~ can contain neither a path from A or AL to B
or B! nor one from B or Bt to A or AL, But I~ can only contain an
#path from A to B and one from AL to B, and this cannot produce

an a-circuit with the R-edges A — AL and B — BL.

Therefore an @-circuit of I’ does not pass through n', hence should be
included in I~ which is a subgraph of the proof net II, contradiction.
T5/PAR We proceed as in the BF/BF case, except that the first item can be left
out, and that the last sentence of the fourth item should be replaced with:
But II™ can only contain an &-path from A to B and one from I} to A, and

this cannot produce an #-circuit with the R-edges A — AL and B — B1.

Confluence and strong normalisation During all elementary steps, the num-
ber of B-edges of the proof net decreases. Moreover the redex configurations are
digjoint. Therefore, the previous proposition 6 entails the following:

Theorem 7. The caleulus of ordered proof nets enjoys strong normalisation and
confluence: a proof net with conclusions and cuts Iy, ..., I', GY, ..., G} ordered by
U reduces to a cul free proof net with conclusions Iy, ... I, ordered by u|F1 -

5 Denotational semantics for this calculus

We compute the semantics || I7 || of a proof net II by extending the method of
experiments of [10, pp. 57-60] or of [29, 33] to this calculus.

We assume that we have an interpretation, i.e. that any atomic formula is
associated with a coherence space. Consequently, to each formula I is associated
a coherence space also denoted by F, by means of the interpretation of the
connectives given in the first section.

Definition8. Let JI be proof net with conclusiont 7y, ..., I, Ff, .., F2[u]. An
experiment of IT iz a labelling of the sub-formulae appearing in the proof net
satlsfymg:

— the label of a sub-formmla I is a token ¥ of the corresponding coherence
space I' (u € |I]).

— the conclusion A # B with » € {p,®, <} of a link {p, ®, <} has the label
(t1,12) Iff its two premises A and B respectively have the labels ¢; and ¢

— the two conclusions A and AL of an axiom link have the same label — this
makes sense because |A| = [A1L].



Ilence an experiment of If is completely defined by associating a point of the
web 4] = |AL| to every axiom A — Al of H.

The experiment is said to succeed whenever: the label (t1,12) of a cut I} =
E @ B! satisfies t1 = ta.

Finally, the semantics of II is the set ||Zf|| of the tuples (#1, ...,1p) such that
there exists a successful experiment according to which the conclusions of the
proof net, i.e. I, ..., I, are respectively labelled 11, ..., 1.

Proposition9. Let II be a proof net with conclusion - Fy, ... Fp FP .. F¥,
let v=1ulp,,.. F,- Then ||I|| is a clique of Hu FLTN O

Proof. We assume that two experiments yields two strictly incoherent tuples
(t1,...,tp) and (), ..., 1) of [I, 1, ..., I, and show that I contains an a-circuit.
The method consists in extending an @-path, until we obtain an &circuit.

We write A : ~ (resp. ~) whenever the labels of A according to the two
experiments are strictly coherent (resp. incoherent) in A.

The 2-path to be constructed has a marking up or dowm, and throughout its
construction fulfils the following requirement:

1. the path always ends on a sub-formula of a conclusions or cut, which may
be a conclusion but not a cut.

2. if the mark is up (resp. down) the path ends on a formmla F¥ : ~ (resp. I : ~)

3. when the path uses an edge of a par or before branching from a premise to
the conclusion (resp. from the conclusion to a premise), the two experiments
are strictly coherent (resp. strictly incoherent) both in the premise and the
conchision.

We start with the empty path ¢;»4} : Iy, and marking up — our assumption
malkes sure there is such an I, Assnuming we already have built a path satisfying
(1), (2) and (3), we review all its possible endings and markings.

Ilere are three cases, the others being similar — see [29, pp. 24-29], for a
complete description of all the cases:

— The path ends on the A premise of A < I} with marking down 5o A : ~
(2). ¥ B : ~ we extend our path using the R-arc from A to B and put the
marking up. If B : ~, if the path already used the R-edge A < B — I? it used
it from A < B to B (3), and using the arc A —+ B we have an a<circuit.
Otherwise we extend our a-path with the Redge A — A < IJ and keep the
marking down.

— The path ends in a conclusion, with markingdown. So Ay : ~ (2), and there
is an arc from A4 to some A, : «. Indeed, if (ay, ..., ap)~(al, ..., ap) [, Al
and ag~a} then 34; > Ag[y] ar~ai[A;]. We extend our &-path using this
arc, and put the marldng up.

— The path ends on the premise I of a cut F} = (E@EL)*, with marking down.
So I : ~ (2), and, because the experiments succeed, BL : . We extend the
elementary alternating path with the R-edge £ — E', with marking up — so
(1) is still fulfilled.



It is easily seen that (1), (2) and (3) are preserved while extending the path.

Theorem 10. Fuwery proof net II has ¢ non-triviel semantics preserved by cui
elimination.

Proof. When II is a cut-free proof net, any of its experiments succeeds, so the
square of the cardinal of || || is the product of the cardinals of the webs corre-
sponding to leaves. 5o the semantics of a cut-free proof net is always non-trivial.

Let ' be a proof net obtained from I7 by one of the elementary cut-
elimination steps; the successful experiments of If and I clearly are in a one-
to-one correspondence. Therefore we can speak of a denotational semantics:
2| =[] 22*]].

The theorem follows from these two remarks.

In [29] we have established the “strong” converse which follows. It expresses a
kind of completeness of coherence semantics w.r.t. ordered proof nets. The proof,
which is very simple for the usual multiplicative calculus enriched with the miz
rule, see [33], is, in the case of ordered proof structures and nets too lengthy to
be given here; one should refer to [29, pp. 19-22].

Theorem 11. There exits a four-token coherence space Z such that, when we
interpret each atomic formula by Z, a proof structure II is ¢ proof net iff || ||
is a cligue.

6 Other results on this calculus
We mention here some more results which may be of interest to the reader.

n-rule The y-rule holds for this caleulus [28, p. 104]: thus the axiom links may

be restricted to atomic formulae.

Iiztenston to full lineer logic There is no difficulty in extending this calculus to
the modalities “?” and “P and additive connectives, using proof nets with hoxes
[10, pp. 43—46] for “I* and “&”. The order outside a -box is the same as inside.
The order on both proof nets included in a &-box is asked to be the same, and
is the one on the outside of the &-box.

Relation to the usual mulliplicative caleulus enriched with the mix rule This
calculus is a faithful extension of proof nets with miz [8, pp. 277-278]. Firstly
the ordered proof nets without any before link exactly are the miz proof net.
Secondly, in a proof net including some before links, each before link may
be turned into a par or times link in order to get a correct miz proof net. It
is trivial for cut-free proof nets, turning before links into par links, but it is
trickier for non-cut-free proof nets, see [28, pp. 104-106].



A moddlity corresponding to before Answering with respect to before a ques-
tion of [11, p. 257], we found, in the category of coherence spaces a self-dual
modality which enables contraction w.r.t. before on hoth sides [30, 31]. Its syn-
tax, now under study, is intended for a constructive treatment of classical logic.

7 The problem of finding a sequent calculus

Finding a sequent calculus corresponding to proof nets dealing with n-ary con-
nectives is not easy — e.g. for the n-ary connectives of [7, pp. 196-197] there is
no sequent caleulus at all.

Because of the De Morgan laws, we can limit ourselves to a calculus of right
handed sequent. For this pomset logic, we only have an imperfect solution,
the calculus of ordered sequents presented in [28, pp. 111-122]. The axiom is
F A, At[@] — thus proofs start with an empty order on the conclusions and cuts
— and the other rules are the following:

F A, B[] F I, A, B[y] F Iyl F A[v] ) FAN] R A, B]
Lo < mix
FDLAp B[u’] FILA<L B[u’] F I A[m] FLLAAG B[m]

In the g and <-rule the order ¥’ is obtained from u by identifying A and B,
to a formula respectively called A p B or A < B. But, for applying the g-rule,
A and I} are asked to have exactly the same predecessors and successors, while,
for applying a <-rule, A is asked to be the only predecessor of I and I is asked
to be the only suceessor of A.

In the miz and @-rule, tv is any order such that to|g = 4 and 1|z = v (where
i denotes the domain of the order u, eg. I', A iIn the case of the ®-rule) which
satisfies the following property:

YU euVV,Viers U<V n|AaV<l ] = U<U'uv V<V o]
— in the ®-rule case, one should read A ® B as A (resp. B} when it is consid-
ered as a formula in ¥4 (resp. B). Furthermore, for the ®@-rule, if 7 <V [t0] (resp.
U»Vro]) with I € 4, V € b then U<A[u]v B<V[v], (resp. U >Alw] v B>V [w]).

The proofs of this sequent calculus translate into ordered proof nets and are
interpreted by coherence semantics; it is even showed to be the largest "standard”
sequent calculus with these properties. Nevertheless, we are unable to prove
that every ordered proof net does actually correspond to a proof of this sequent
caleulus. The techniques of [32] give the hope of a better solution, and we will
present an outcome of this study, which enlightens the meaning of before, and
then explain where the diffienlty lies.

Definable connectives: series parallel orders A first interesting step 1s to
look at the definable n-ary connectives, i.e. the ones which behaves like formu-
lae. Let us explain what this means by analogy with the usual multiplicative
caleulus, whose only connectives are g and ©. Given any proof structure If with
conclusions Ay, ..., Ap, B1,..., By, there is a formula F(A,,...,4,), namely
Ay - - Iy such that I is a proof net iff II' is, where II* is the proof structure



with the same axiom links but where the conclusions Aq,..., An are replaced
by the single conclusion F(A;y,...,An) — I’ obtained from I7 by writing the
(R&B) formula tree of F below the conclusions A;. Moreover, the formula F is
unique up to the commutativity and associativity of .

Ilere, assuming the order on the A;’s is 4, and that no A; is related to a
B; by the order, we have a similar result, which enlightens the meaning of the
connectives. In [28, pp. 106-109], we have shown that:

— The formula F does not use the times connective.

— The possibility of writing a par link with A; and Ay as hypotheses exactly
corresponds to A; and A; having the same predecessors and successors.

— The possibility of writing a before link with A; and A, as hypotheses exactly
corresponds to A; being the only predecessor of A; and A; the only successor
of A,‘

— In both cases the order which has to be taken on A; p Ag, Az,...,4p or
Ay < Asg, Az, ..., Ap 15 obtained by identifying Ay and Aj.

S0 the question turns out to be: when does u reduce to a single point by
these contractions? We have proved that it is the case iff 4 is an N-free order.?
The sequence of contractions, i.e. the way of writing F from g and <, is unique
up to the commutativity of g and to the associativity of g and <.

But the N-free orders are known to be series parallel orders [37, pp. 310-
311],i.e. to belong to the smallest class of orders closed under disjoint union and
ordinal sum, and reading our formula from outermost connectives to imnermost
ones we obtain the decomposition of 4 as a series parallel order, g corresponding
to parallel composition, and < to serial composition.

The funny thing about it is that these orders were introduced to model con-
currency constraints, which exactly correspond to the inner strategy described
by the order. Nevertheless our calculus is able to deal with any constraint order,
although the constraints expressed by a non-series-parallel order are harder to
understand.

Towards a complete sequent calculus Restricting ourselves to definable
connectives seems a sensible approach, but the conmective times does not fit
in this setting. This 18 why we are now thinking of a more general calculus,
dealing with a class of relations which include series-parallel orders and series
parallel graphs: thus the connective times, corresponding to undirected series
composition, fits in. This leaves the ordered proof nets almost unchanged, but
allows a unary mle for the connective times, ruled by the relation.

This approach looks very promising. For the usual multiplicative calculus, it
has already brought some results, [32]. But this non-commutative case, which
involves directed graphs, is more difficult to handle than the usual one for which
numerous proofs are known [10, 7, 8, 32]. Indeed, connectivity questions are
much more complex for directed graphs (see e.g. [16]) and, even in [22], there is

4 The Hasse diagram of the restriction of U to four points never is N.



nothing about matchings for directed graphs. . . Furthermore, we are not simply
looking for a bridge, as in the nsual calculus, but for an edge cut-set with a given
property.

LRoughly speaking, we are looking for an inductive definition of the graphs
with a perfect matching which possesses no &-circuit; when the graphs are not
directed it is done [32], but otherwise we just obtained some partial results, and
we think it is too early to tell more than these hints.
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