Types as Weak ∞ -Groupoids

Thomas Streicher (TU Darmstadt)

November 2010

Identity Types (1)

are the most intriguing concept of intensional Martin-Löf type theory (ITT). They are given by the rules

$$\begin{array}{c} {\displaystyle {\displaystyle {\displaystyle \Gamma \vdash A} \\ \overline{ {\displaystyle {\displaystyle \Gamma ,x,y}{\rm{:}}A \vdash {\rm{Id}}_A(x,y)} }} \left({\rm{Id}}{\rm{-}}F \right) \\ \\ {\displaystyle {\displaystyle {\displaystyle \Gamma \vdash A} \\ \overline{ {\displaystyle {\displaystyle \Gamma \vdash r_A(x)}{\rm{:}} {\rm{Id}}_A(x,x)} }} \left({\rm{Id}}{\rm{-}}I \right) \end{array} \right. } \end{array}$$

$$\frac{ \Gamma, x, y: A, z: \mathrm{Id}_A(x, y) \vdash C(x, y, z) \quad \Gamma, x: A \vdash d: C(x, x, r_A(x)) }{ \Gamma, x, y: A, z: \mathrm{Id}_A(x, y) \vdash J((x)d)(z): C(x, y, z) }$$
(Id-*E*)

together with the conversion rule

$$J((x)d)(r_A(t)) = d[t/x]$$

and motivated by the intention that *all* concepts appear as inductively defined (families of) types.

Identity Types (2)

Using J one can define operations

 $cmp_A \in (\Pi x, y, z; A) \operatorname{Id}_A(x, y) \to \operatorname{Id}_A(y, z) \to \operatorname{Id}_A(x, z)$ $inv_A \in (\Pi x, y; A) \operatorname{Id}_A(x, y) \to \operatorname{Id}_A(y, x)$

validating (where we write id_x for $r_A(x)$)

- (a) $(\Pi x, y, z, u:A)$ $(\Pi f: Id_A(x, y))(\Pi g: Id_A(y, z))(\Pi f: Id_A(z, u))$ $Id_{Id_A(x, u)}(cmp(f, cmp(g, h)), cmp(cmp(f, g), h))$
- (b) $(\Pi x, y:A)$ Id $(cmp(id_x, f), f) \land$ Id $(cmp(g, id_y), g)$

(c)
$$(\Pi x, y; A)(\Phi f; \operatorname{Id}_A(x, y))$$

 $\operatorname{Id}(cmp(f, inv(f)), id_x) \wedge \operatorname{Id}(cmp(inv(f), f), id_y)$

rendering type A as an **internal groupoid** where the groupoid equations hold only in the sense of propositional equality, i.e. for instance (a) means that there is a term $assoc_A(f,g,h)$ of type

 $Id_{Id_A(x,u)}(cmp(f, cmp(g, h)), cmp(cmp(f, g), h))$ which may be thought of as a **2-cell** in the sense of *higher dimensional categories*.

The Groupoid Model

In early 1990ies I observed that one can prove

 $(\Pi A: Set)(\Pi x, y: A)(\Pi: f, g: Id_{Id_A(x,y)}(f,g))$ i.e. proof irrelevance for equality proofs (PIE). using the following natural extension of MLTT $\Gamma, x: A, z: Id_A(x, x) \vdash C(x, z) \quad \Gamma, x: A \vdash d: C(x, r_A(x))$ (Id-E')

 $\Gamma, x: A, z: \mathrm{Id}_A(x, x) \vdash K((x)d)(z): C(x, z)$

In 1994 [HS95] M. Hofmann and I constructed a groupoid model for ITT where *K* does not exists and (a)-(c) hold in the sense of judgemental equality. The **key idea** was to interpret **types as groupoids** and **families of types as fibrations of groupoids** and

 $\operatorname{Id}_A(x,y)$ as A(x,y)

which may contain more than one element if the groupoid is not posetal. Thus

PIE fails in the groupoid model!

Towards Weak ω -Groupoids

Already in [HS95] we observed that

the **bureaucracy of identity types** forces one to **check all coherence conditions** when reasoning up to isomorphism

i.e. when treating 'isomorphic' as 'equal' (as categorists like to do) which sometimes is a source of mistakes when done naively!

Already in [HS95] it was observed that ∞ groupoids might be more appropriate since in ITT the types $Id_A(x, y)$ are groupoids themselves and not just sets.

We also observed that strict ω -groupoids are not sufficient either because in ITT the conditions (a), (b) and (c) do **not hold in the sense of judgemental equality** but **only in the sense of propositional equality**, i.e. that **weak** ω -groupoids are more appropriate.

Towards Weak ω -Groupoids

Many definitions of hdc's and hdg's are fairly complex. Therefore, in a talk in Uppsala (November 2006) I suggested to consider the easiest notion of weak higher dimensional groupoid, namely **Kan complexes** in the category (topos) $SS = \widehat{\Delta}$ of *simplicial sets*. Accordingly, families of types will be modeled as **Kan fibrations**.

The latter form part of the classical Quillen model structure on SS. Awodey & Warren promoted the idea of interpreting Id-types in Quillen model structures. But there is a problem with BC which can be overcome when having a universe available.

Independently, V. Voevodsky (October 2006) suggested to interpret type theory in simplicial sets (see www.math.ias.edu/~vladimir). In particular, he came up with a construction of universes and suggested his **Equivalence Axiom** roughly saying that types are equal iff there is a weak equivalence between them. Let Δ be the category of finite nonempty ordinals and order preserving maps between them. We write [n] for $\{0, 1, \ldots, n\}$. The maps of Δ are generated by the morphisms

$$d_n^i: [n{-}1] \rightarrow [n] \qquad s_n^i: [n] \rightarrow [n{-}1]$$

where the first one is monic and omits i and the second one is epic and "repeats" i. We write SS for $\operatorname{Set}^{\Delta^{\operatorname{op}}}$ and Δ^n for Yoneda of [n].

For $0 \leq i \leq n$ let $\partial_i \Delta^n$ be the subobject of Δ^n consisting all maps $u : [m] \rightarrow [n]$ with $i \notin \operatorname{im}[u]$. Let $\partial \Delta^n = \bigcup_{i=0}^n \partial_i \Delta^n$ called the boundary of Δ^n .

For $0 \le k \le n$ let $\Lambda_k^n = \bigcup_{i \ne k} \partial_i \Delta^n$, i.e. the union of all (n-1)-faces of Δ^n containing the node k.

 Λ_k^n is an inner horn iff 0 < k < n.

Pictures of Horns

The horn Λ_1^2 can be depicted as

where the omitted faces are indicated by broken lines.

 Λ_1^2 is an inner horn as opposed to the horns Λ_0^2 and Λ_2^2 depicted as

respectively.

Kan Fibrations

A **horn** in a simplicial set X is a morphism $h : \Lambda^k[n] \to X$. A **Kan complex** is a simplicial set X such that every horn $h : \Lambda^n_k \to X$ in X can be extended to some $\overline{h} : \Delta^n \to X$ making

commute (this extension need not be unique!).

Remark Requiring this only for inner horns gves rise to Joyal's notion of **quasi-category**.

A Kan fibration is a morphism $p: E \to B$ in SS such that every commuting square

has some (generally non-unique) filler \overline{h} .

There is an obvious functor from Δ to \mathbf{Sp} whose left Kan extension we denote as

 $|\cdot|:\mathcal{SS}\to\mathbf{Sp}$

and call **geometric realization**. We call a map w in SS a **weak equivalence** iff |w| is a homotopy equivalence in Sp.

The classical Quillen model structure on SS is given by (C, W, F) where

 $\mathcal{C} = \text{class of monomorphisms}$

 $\mathcal{W} = \text{class of weak equivalences}$

 $\mathcal{F} = \text{class of Kan fibrations.}$

Closure Properties of ${\mathcal F}$

Since SS is a topos it is in particular locally cartesian closed. As \mathcal{F} is defined by a weak orthogonality condition it is obvious that \mathcal{F} is closed under Σ and Π , i.e.

 (Σ) \mathcal{F} is closed under composition

(Π) $\Pi_f(g) \in \mathcal{F}$ whenever $f, g \in \mathcal{F}$.

Thus (SS, F) gives a model of type theory without Id-types.

Let $\Delta \dashv \Gamma : SS \rightarrow Set$. Then all discrete simplicial sets $\Delta(S)$ are Kan complexes and all $\Delta(f)$ are Kan fibrations.

Thus (SS, F) contains Set as a submodel.

Interpreting Id-Types (1)

Awodey and Warren have suggested to interpret Id-types in Quillen model structures as follows. For a fibration $a : A \rightarrow I$ the map δ_a

is a fibration, too. We may consider

with $p_A \in \mathcal{F}$ and $r_A \in \mathcal{C} \cap \mathcal{W}$.

Given a fibration $p_C: C \to \mathrm{Id}_A$ and $d: A \to C$ with $p_C \circ f = r_A$ then we have

for some J(d).

But the **problem** is that J(d) is not unique and thus one does not know how to make a choice which is stable under pullbacks along substitutions $u: J \rightarrow I$.

This problem, however, can be overcome when instantiating I by the *generic* context

 $A : \mathsf{Set}, C : (x, y:A)\mathsf{Set}^{\mathsf{Id}_A(x,y)}, d : (x:A)C(x, x, r_A(x))$

where Set is some appropriate universe since then one has to split just once and for all !

Lifting Universes

If \mathcal{U} is a (Grothendieck) universe in Set and \mathcal{C} is a small category then this gives rise to a type-theoretic universe $p_U : \tilde{U} \to U$ in $\operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}$. The object U is defined as

$$U(I) = \mathcal{U}^{(\mathcal{C}/I)^{\mathsf{op}}} \qquad U(\alpha) = \mathcal{U}^{\Sigma^{\mathsf{op}}_{\alpha}}$$

where for $\alpha : J \to I$ the functor $\Sigma_{\alpha} : C/J \to C/I$ is postcomposition with α . The presheaf \tilde{U} is defined as

 $\widetilde{U}(I) = \{ \langle A, a \rangle \mid A \in U(I) \text{ and } a \in A(id_I) \}$

and

$$\widetilde{U}(\alpha)(\langle A,a\rangle) = \langle U(\alpha)(A), A(\alpha \xrightarrow{\alpha} id_I)(a)\rangle$$

for $\alpha : J \to I$ in \mathcal{C} .

The map $p_U: \widetilde{U} \to U$ sends $\langle A, a \rangle$ to A.

One easily checks that p_U is **generic** for maps with fibres small in the sense of \mathcal{U} , i.e. these maps are up to iso precisely those which can be obtained as pullback of p_U along some map in $\widehat{\mathcal{C}}$.

Lifting Universes to SS

Now in case $C = \Delta$ we adapt this idea in such a way that p_U is generic for Kan fibrations with fibres small in the sense of U. For this purpose we **redefine** U as

 $U(n) = \{A \in \mathcal{U}^{(\Delta/[n])^{op}} \mid P_A \text{ is a Kan fibration}\}$ where $P_A : \text{Elts}(A) \to \Delta[n]$ is obtained from Aby the Grothendieck construction. For maps α in Δ we can define $U(\alpha)$ as above since Kan fibrations are stable under pullbacks. We define \tilde{U} and p_U using the same formulas as above but understood as restricted to U in its present form.

Obviously, families of simplicial sets with $\mathcal{U}\text{-}$ small fibres are closed under $\Sigma,\ \Pi.$

Voevodsky has shown that U is a Kan complex and p_U is a Kan fibration. Thus p_U gives rise to a universe Set appropriate for interpreting Id-types.

Prop in SS

Starting from $\mathcal{U} = \{0, 1\} = \{\emptyset, \{\emptyset\}\}$ one gets a universe $p_U = \mathsf{EI} \to \mathsf{Prop.}$ Apparently Prop is closed under arbitrary Π 's.

Notice that Prop([n]) consists of all monos $m: P \rightarrow [n]$ which are Kan fibrations. These are known to be trivial, i.e. either minimal or maximal. Thus, in SS we have $Prop \cong 2 = 1 + 1$ and

i.e. this way we obtain an interpretation of Prop which is 2-valued, boolean and proof-irrelevant.

Although the interpretation of logic is quite as in \mathbf{Set} equality on Set is fairly noncanonical because it validates Voevodsky's

Equivalence Axiom

We first introduce a few abbreviations iscontr $(X : Set) = (\Sigma x : X)(\Pi y : X) \operatorname{Id}_X(x, y)$ hfiber $(X, Y : Set)(f : X \to Y)(y : Y) =$ $= (\Sigma x : X) \operatorname{Id}_Y(f(x), y)$ isweq $(X, Y : Set)(f : X \to Y) =$ $= (\Pi y : Y) \operatorname{iscontr}(\operatorname{hfiber}(X, Y, f, y))$ Weq $(X, Y : Set) = (\Sigma f : X \to Y)$ isweq(X, Y, f)

Using the eliminator ${\cal J}$ for identity types one easily constructs a map

```
eqweq(X, Y : Set) : Id_{Set}(X, Y) \to Weq(X, Y)
```

Then the Equivalence Axiom

 $EquAx : (\Pi X, Y : Set) isweq(eqweq(X, Y))$

postulates that all maps eqeweq(X, Y) are themselves weak equivalences.

Voevodsky has shown that the Equivalence Axiom holds in the above model in simplicial sets.

Conclusion and Problems

- Simplicial sets provide a classical model of impredicative type theory extending the naive model in Set.
- Types are interpreted as Kan complexes, i.e. weak higher dimensional groupoids. Families of types are Kan fibrations.
- Types in the universe Set validate the Equivalence Axiom roughly saying that types in Set are propositionally equal iff there is a weak equivalence between them. Id_{Set}(X,Y) is not a proposition but a type in a universe containing Set as an element.
- There is no obvious computational meaning of the Equivalence Axiom!