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Remarks

Motivation: natural language semantics, models of FO S4.

A beautiful subject — but not my main research area.

Quite difficult to know what has exactly been achieved on
this question.

The presentation of Kripke-Joyal forcing and counter exam-
ple is from a lecture by Jacques Van de Wiele in 1987.
Special dedication to Laurent Regnier who attended as well.

The direct completeness proof is essentially due to
Ivano Ciardelli (in TACL 2011 cf. reference at the end).

It has been re-worked and extended with David Théret since
2016.

Thanks to Alexis Saurin for suggesting a talk at this meeting.

Thanks to the Topos & Logic group (Abdelkader Gouaich,
Jean Malgoire, Nicolas Saby, David Theret) of the Institut
Montpelliérain Alexander Grothendieck



 

A Logic?
formulas

proofs! interpretations



 

A.1. Formulas, proofs and models

Formulas of a given first-order logical language, say L
can be true (or not) in a given L - structure.

An L - structure is simply a set M with an interpretation of
constants in M and interpretation of n-ary predicates as n-ary
relations on M , n-ary functions symbols as n-ary functions
from Mn to M etc.

Soundness: what is provable is true in any L -structure.

Completeness: what is true in every L -structure is provable.



 

A.2. Morphisms of L -structures

Let Mu and Mv be two L structures over the same language
— interpretation in u or in v of function symbols (e.g. ϑ )
and predicates (e.g. R) are denoted with a subscript u or v
(e.g. Ru ϑu: interpretations in Mu and Rv ϑv : interpretations
in Mv ).

A map ρu�v from |Mu| to |Mv | is said to be a morphism of
L -structures when:

• For any k-ary function ϑ symbol of L :
∀c1, ...,ck ∈ |Mu|

ρu�v (ϑu(c1, ...,ck)) = ϑv (ρu�v (c1), ...,ρu�v (ck))

• For any n-ary predicate R of L :
∀c1, ...,cn ∈ |Mu|

if (c1, ...,cn) ∈ Ru then (ρu�v (c1), ...,ρu�v (ck)) ∈ Rv



 

A.3. Presheaf semantics: models

A presheaf model M for L is a presheaf of first-order L−structures
over a Grothendieck site (C ,�) (or a topological space viewed
as a poset for inclusion):

• for any object u an L structure Mu

• for any arrow f : v ↪→ u a morphism (cf. supra) of L
structures M(f ) : Mu→Mv

satisfying the following extra conditions.
Separateness For any elements a,b of Mu,
if there is a cover u�{fi : ui ↪→ u | i ∈I } such that for all i ∈I
we have M(fi)(a) = M(fi)(b),
then a = b.
Local character of atoms For any n−ary relation symbol R ,
for any tuple (a1, ... ,an) from Mu

if there is a cover u � {fi : ui ↪→ u | i ∈ I } such that ∀i ∈ I
one has (M(fi)(a1), ... ,M(fi)(an)) ∈ Rui ,
then (a1, ... ,an) ∈ Ru.



 

A.4. Presheaf semantics: Kripke-Joyal forc-
ing — 1/4 assignments

Given a presheaf model M , and some open u, we inductively
define for any formula F of L the relation u 
 F (”meaning”:
F is true at u).

Assignment A usual, in order to define u 
 F , we need an
assignment ν in Mu the free variables of F , and this is written
u 
ν F with ν = [z1 7→ c1; · · · ;zp 7→ cp] where the zi are the free
variables in F and ci ∈ |Mu|.

As we shall see, u 
ν F can be defined from v 
ν ′ F ′ with
f : v ↪→ u and with F ′ having free variables among those
of F (plus possibly one free variable in the ∃ and ∀ cases,
but its assignment will be defined when dealing with quanti-
fiers). If ν = [z1 7→ c1; · · · ;zp 7→ cp] we naturally define ν ′ by
ν ′ = [z1 7→M(f )(c1); · · · ;zp 7→M(f )(cp)] where M(f ) is the re-
striction M(f ) : |Mu| → |Mv |.



 

A.5. Presheaf semantics: Kripke-Joyal forc-
ing — 2/4 atoms and conjunction

• u 
ν R(t1, ... , tn) iff ([t1]ν , ... , [tn]ν) ∈ Ru.

• u 
ν t1 = t2 iff [t1]ν = [t2]ν .

• u 
ν ⊥ iff u = /0 It is so, because the empty covering
is a covering (with 0 open) of the empty open. Hence,
because of the locality condition on atoms, the empty
open forces all atomic formulas including ⊥.

• u 
ν ϕ ∧ψ iff u 
ν ϕ and u 
ν ψ.



 

A.6. Presheaf semantics: Kripke-Joyal forc-
ing — 3/4 disjunction and existential

• u 
ν ϕ ∨ψ iff there exists a covering family {fi : ui ↪→
u | i ∈ I } such that for any i ∈ I we have ui 
νi ϕ or
ui 
νi ψ.
Alternatively, u 
ν ϕ∨ψ there exist two opens u1,u2 with
u1∪u2 = u ui 
 ϕ and u2 
 ψ.

• u 
ν ∃xϕ iff there exists a covering family {fi : ui ↪→ u | i ∈
I } and elements ai ∈ |Mui | for i ∈I such that ui 
νi∪[x 7→ai ]

ϕ for any index i .



 

A.7. Presheaf semantics: Kripke-Joyal forc-
ing — 4/4 implication and universal

• u 
ν ϕ → ψ iff for all f : v ↪→ u, if v 
νv ϕ then v 
νv ψ.

• u 
ν ¬ϕ iff for all f : v ↪→ u, with v 6= /0, v 6
νv ϕ. This is
obtain from /0 
⊥ and→ cases because ¬ϕ = ϕ →⊥.

• u 
ν ∀xϕ iff for all f : v ↪→ u and all a ∈Mv , v 
νv∪[x 7→a] ϕ.



 

A.8. Validity

A formula F is said to be valid in a topological model in a
presheaf model over a topological space (X ,O(X )) or a pre-
topology whenever

X 
 F

i.e. F is true at the global section.



 

B An example



 

B.1. Language

Let us consider the language of ring theory:

• two constants 0,1

• two binary functions +, ·

• equality as the only predicate



 

B.2. The (pre)sheaf of L -structures

A presheaf model over the topological space R for this lan-
guage is defined by |Mu| = C (u,R) the continuous functions
from u to R with 0u(x) = 0 and 1u(x) = 1 for all x ∈ u +u point-
wise addition (f +u g)(x) = f (x)+ g(x), ·u pointwise multipli-
cation (f ·u g)(x) = f (x) ·g(x).

The restriction ρu�v : |Mu| → |Mv | morphism, when v ↪→ u is
defined by: ∀f ∈ C (u,R)∀x ∈ v ρu�v (f )(x) = f (x).

ρu�v is a morphism, because:

• ρu�v (0u) = 0v ,

• ρu�v (1u) = 1v

• (”=” is the only predicate) ∀f ,g ∈ |Mu|= C (u,R) if f = g
in C (u,R) then ρu�v (f ) = ρu�v (g) in C (v ,R).



 

B.3. Locality and separateness conditions

Locality condition for atoms:

”=” is the only predicate so we just have to check that, given
two elements a and b of Mu

if there is a cover u�{fi : ui ↪→ u | i ∈I } such that ∀i ∈I we
have (ρu�ui (a)) = ρu�ui (b)) in |Mui |,
then a = b in |Mu|. This is true, because two functions that
are equal on each open of a covering of u are equal on u.

Separateness is exactly the locality condition for our unique
predicate, i.e. the ”=” predicate, which is interpreted as ”=”.

Remark: This presheaf is a sheaf: given a cover ui of R and
a family fi ∈ C (ui ,R) such that any two fj and fk agree on
uj = uk for all j ,k there exists a unique f in C (R,R) such that
f
∣∣
ui
= fi .



 

B.4. A remark on C (U ,R) 1/3

Given any non empty open subset U ⊂ R there exist

- an open subset V =]a,b[⊂ U

- and a continuous function ` : V 7→ R

such that V 6
[x 7→`] (x = 0)∨¬(x = 0) with `:

` : ]a,b[ 7→ R
x 7→ 0 if x 6 (a+b)/2
x 7→ x− (a+b)/2 if x > (a+b/2)



 

B.5. A remark on C (U ,R) 2/3

]a,b[6
[x 7→`] (x = 0∨¬(x = 0)).

We proceed by contradiction (the meta logic is classical).

Let us assume that ]a,b[
[x 7→`] (x = 0∨¬(x = 0)).

Then there exists open sets u1,u2 st. u1∪u2 =]a,b[, such that:

• u1 
[x 7→`u1 ]
x = 0 i.e. ∀x1 ∈ u1 `(x1) = 0

• u2 
[x 7→`u2 ]
¬(x = 0) i.e. ∀v2 ⊂ u2,v2 6= /0 v2 6
[x 7→`u2 ]

`= 0
i.e. ` never is constantly 0 on a (non empty) sub open
v2 of u2.



 

B.6. A remark on C (U ,R) 2/3

This is impossible because (a+b)/2 must be in u1 or in u2.

• If (a+b)/2∈ u1 then ` should be constantly 0 on a neigh-
bourhood of (a+b)/2, but it is false on the right side of
(a+b)/2.

• If (a+ b)/2 ∈ u2 then ` should never be constantly 0 on
any sub open of u2 but if (a + b)/2 ∈ u2 there are sub
opens in u2 on the left side of (a+ b)/2 where ` is con-
stantly 0.



 

B.7. A classically valid but intuitionistically non
valid formula

C (R,R) validates ¬∀x (x = 0)∨¬(x = 0) (*).

Indeed, according to Kripke-Joyal R
 ¬∀x (x = 0)∨¬(x = 0)
means that for every non empty open u ⊂ R, u 6
 ∀x (x =
0)∨¬(x = 0).

But u 
 ∀x (x = 0)∨¬(x = 0) means that for every open v ⊂ u
and for every f ∈ C (v ,R) v 
[x 7→f ] (x = 0)∨¬(x = 0).

We precisely established supra (with `)
that u 6
 ∀x (x = 0)∨¬(x = 0).

But C (R,R) validates ∀x ¬¬((x = 0)∨¬(x = 0)) (**)
— because ` ¬¬(C ∨¬C ) is provable for all C .

However in classical logic (*) is the negation of (**) !!!



 

C Completeness



 

C.1. Statements

Soundness: F intuitionistically provable⇒ F true at any open
of any topological interpretation.

Completeness: F true at a global section any topological in-
terpretation⇒ F intuitionistically provable.

Two lemmas:

• (functoriality) if F [c1, ...,cn] true at U
then F [c1

V , ...,cn
V ]true at any open V ⊂ U .

• (locality) The locality condition for atomic formula (cf.
above) extends to any formula: if (ui) covers u, for all
i u 
xk 7→c

ui
k

F then u 
xk 7→c F .



 

C.2. Proof of soundness

Induction on the proof height, looking at every possible last
rule, e.g. in natural deduction. Below: ∨e case.

Θ ` (A∨B) A,Γ ` C B ,∆ ` C
∨e

Θ,Γ,∆ ` C

We have to show that U 
Θ,Γ,∆ then U 
 C .

If U 
 Θ by induction hypothesis, U 
 A∨B . Hence, there
exists a covering (Ui) such that for every i Ui 
 A or Ui 
 B .

If Ui 
 A, because U 
 Γ we have Ui 
 Γ (functor property),
and by induction hypothesis (proof of A,Γ ` C ) Ui 
 C .

Similarly, if Ui 
 B , then Ui 
 C .

So for all i Ui 
 C and by locality lemma U 
 C .



 

C.3. Canonical model construction:
the underlying site

For a direct proof, we consider this particular ”syntactic” sheaf
model.

Canonical site:

• Category: we take the Lindenbaum-Tarski algebra L

– Objects: classes of provably equivalent formulas ϕ.
– Arrows: ϕ ≤ ψ ⇐⇒ ϕ ` ψ

• Grothendieck topology: ϕ �{ψi}i∈I whenever

∀χ
[

ϕ ` χ iff (∀i ∈ I ψi ` χ)
]

Think of the last line as ϕ =
∨
i ψi

(incorrect, because FOL formulae are finite!)



 

C.4. Properties of this site

The proposed site is actually a site
i.e. it enjoys the three properties.

1. ϕ �{ϕ};

2. if ψ ` ϕ and ϕ �{ϕi | i ∈I } then ψ �{ψ ∧ϕi | i ∈I };

3. if ϕ �{ϕi | i ∈I }
and if for each i ∈I , ϕi �{ψi ,k |k ∈Ki},
then ϕ �{ψi ,k | i ∈I ,k ∈Ki}.



 

C.5. Canonical model construction: the presheaf

• Put t ≡ϕ t ′ in case ϕ ` t = t ′.

• Denote by tϕ the equivalence class of t modulo ≡ϕ .

Canonical presheaf:

• Model Mϕ :

1. Universe |Mϕ |:
set of equivalence classes tϕ of closed terms;

2. Function symbols: fϕ(~t
ϕ) = f (~t)ϕ ;

3. Relation symbols:~tϕ ∈ Rϕ ⇐⇒ ϕ ` R(~t).

• Restriction. If tψ ∈Mψ and ϕ ≤ ψ, put tψ �ϕ= tϕ .



 

C.6. The canonical presheaf is well defined

The canonical presheaf is separated. If two elements have
the same restrictions on each part of a cover, then they are
equal.

The interpretation of atomic formulas is local. If an atomic
formula holds on each part of a cover of U then it holds on
U .

(Ivano Ciardelli claims that the glueing of compatible ele-
ments may not exists, i disagree, I think the canonical (sep-
arated) presheaf is actually a sheaf).



 

C.7. Method for the proof of completeness

∀ψ
[
∀ϕ [ if ϕ 
 ψ then ϕ ` ψ]

]
or without much additional effort

∀ψ
[
∀ϕ[ϕ 
 ψ iff ϕ ` ψ]

]
By induction on the formula ψ.

What is fun is that soundness mainly uses introduction rules
while completeness mainly uses elimination rules.
The method and the construction can be parametrised by a
context Γ for obtaining what is called strong completeness: if
in every interpretation u 
 Γ entails u 
 X for any open u then
(iff) Γ ` X .
The quotient on formulas is not really needed.
Having equality is not mandatory but pleasant.



 

C.8. Sketch of completeness proof

Truth Lemma 1. For any formula ϕ and sentence ψ,

ϕ 
 ψ ⇐⇒ ϕ ` ψ

Proof By induction on ψ. The two directions of each induc-
tive step amount to the introduction and elimination rules for
the given logical constant.

Let us look at the case of the existential quantifier.



 

C.9. Completeness ∃ direction⇒

• Suppose ϕ 
 ∃xψ(x).

• There is a family {ϕi | i ∈ I } and elements t
ϕi
i ∈ Mϕi

such that ϕi `[x 7→t
ϕi
i ]

ψ(x) for all i ∈I .

• Since [t] = tϕi for closed t at ϕi , this is ϕi 
 ψ(ti).

• By induction hypothesis amounts to ϕi ` ψ(ti).

• By rule (∃i), for any i ∈I we have ϕi ` ∃xψ(x).

• Since ϕ � {ϕi |, i ∈ I }, by the meaning of � we have
ϕ ` ∃xψ(x).



 

C.10. Completeness ∃ direction⇐

• Suppose ϕ ` ∃xψ(x).

• We must provide a covering of ϕ and local witnesses.

• For any constant c , define ϕc = ϕ ∧ψ(c).

• Since ϕc ` ψ(c), by induction hypothesis ϕc 
 ψ(c).

• Since [c ] = cϕc at ϕc , also ϕc `[x 7→cϕc ] ψ(x), i.e. the ele-
ment cϕc is a witness for the existential at ϕc .

• It remains to be seen that ϕ �{ϕc |c a constant}.



 

C.11. Completeness ∃ direction⇐, continued

• Suppose ξ is derivable from ϕ ∧ψ(c) for any constant
c .

• Let c∗ be a constant that occurs neither in ϕ nor in ξ .

• In particular, ϕ ∧ψ(c∗) ` ξ , that is, ϕ ,ψ(c∗) ` ξ .

• But since c∗ occurs neither in ϕ nor in ξ , by the rule (∃e)
we have ϕ ,∃xψ(x) ` ξ .

• Thus by the assumption ϕ ` ∃xψ(x) we also have ϕ ` ξ .

• This shows that ϕ �{ϕc |c a constant}.

• Hence we conclude ϕ 
 ∃xψ(x).



 

C.12. State of the art: hard to tell

Before 1995 : survey by Makkay and Reyes in 1995.

After 1995, other work in particular by Awodey.

Direct completeness via canonical presheaf: Ivano Ciardelli.
A Canonical Model for Presheaf Semantics. Talk at Topology,
Algebra and Categories in Logic (TACL) 2011, Jul 2011, Mar-
seille, France. 2011.HAL Id: inria-00618862 https://hal.inria.fr/inria-
00618862

Ongoing work with David Théret in Montpellier.



 

C.13. Future work

Connection to Ω sets of Dana Scott (roughly speaking, if i un-
derstand properly: one classical model, but the truth value of
P(a) varies in a Heyting algebra, like Boolean valued mod-
els) ?
Can we construct a canonical sheaf and not just separated
presheaf e.g. with the sheaf completion method that basi-
cally simply formally adds the missing global sections? Or
by imposing some additional locality condition on terms and
equality?
(Pre)sheaves are particular kinds of Kripke models, conversely
can any Kripke model be viewed as a pre(sheaf) with the or-
der topology?
Is it possible to do so with a standard topology (instead of a
pretopology / Grothendieck topology)?
Does it applies to first order S4?

Thank you for your attention.


