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C.3. Types and terms: Curry-Howard

A proof of A! B is a function that maps proofs of A
to proofs of B .

Think of a formula/type as the set of its proofs.

Types are.... formulae.

l -terms encode proofs u : U means u is a term of
type U .

We will also write u : U as u
U .



C.4. Terms: Curry-Howard

1. hypotheses variables of each type which are terms
of this type

2. constants there can be constants of each type

3. abstraction if x : U is a variable and t : T then
(lxU . t) : U ! V .

4. application if f : U ! V and t : U then (f t) : V

With such typed terms we can faithfully encode proofs.

Variables are hypotheses (that are simultaneously
cancelled).



C.5. Reduction and Normalisation

Reduction: (lx : U . t)U!V
u
U reduces to t[x := u] : V .

Every simply typed lambda term reduces to a unique
normal form, regardless the reduction strategy used.



C.6. Representing formulae within lambda cal-
culus — connectives

Assume that the base types are e and t and that the
only constants are

We need the following logical constants:

Constant Type
9 (e ! t)! t

8 (e ! t)! t

^ t ! (t ! t)
_ t ! (t ! t)
� t ! (t ! t)

Ce shot est

Èeeps



C.7. Representing formulae within lambda cal-
culus — language constants

The language constants for First Order Logic (for a
start):

• Rq of type e ! (e ! (....! e ! t))
e.g. likes: e ! e ! t, sleeps e ! t

• fq of type e ! (e ! (....! e ! e))



C.8. Formulae and normal lambda terms

Proposition 4 A normal lambda-term of type t using

only the constants given above corresponds to a for-

mula of first-order logic.



C.9. Example: From formulae to normal lambda
terms

8x .barber(x)� shaves(x ,x)

8(lxe. (� barber(x))((shaves(x))(x)))

Another one?

Detailed examples: a FOL formula as a term and as
a natural deduction proof.



C.10. For Montague semantics

Non normal lambda terms of type t coming from syn-
tax do not really correspond to formulae.

Hence we need:

• normalisation

• a proof that the normal terms do correspond to
formulae, as we just shown.



C.11. Montague semantics. Types.

Simply typed lambda terms

types ::= e | t | types ! types

chair , sleep e ! t

likes transitive verb e ! (e ! t)



C.12. Montague semantics: Syntax/semantics.

(Syntactic type)⇤ = Semantic type
s
⇤ = t a sentence is a proposi-

tion
np

⇤ = e a noun phrase is an entity
n
⇤ = e ! t a noun is a subset of the

set of entities
(A\B)⇤ = (B/A)⇤ = A! B extends easily to all syn-

tactic categories of a Cat-
egorial Grammar e.g. a
Lambek CG

Logical operations (and, or, some, all the,.....) are the
lambda-term constants defined above.



C.13. Montague semantics
Logic within lambda-calculus

Words in the lexicon need constants for their denota-
tion:

likes lxly (likes y) x x : e, y : e, likes : e ! (e ! t)
<< likes >> is a two-place predicate

Garance lP (P Garance) P : e ! t, Garance : e
<< Garance >> is viewed as

the properties that << Garance >> holds



C.14. Montague semantics.
Computing the semantics 1/5

1. Replace in the lambda-term issued from the syn-
tax the words by the corresponding term of the
lexicon.

2. Reduce the resulting l -term of type t to obtain
its normal form, which corresponds to a logical
formula, the “meaning”.



word syntactic type u

semantic type u
⇤

semantics: l -term of type u
⇤

x
v means that the variable or constant x is of type v

some (s/(np\s))/n
(e ! t)! ((e ! t)! t)
lPe!t lQe!t (9(e!t)!t (lxe(^t!(t!t)(P x)(Q x))))

statements n

e ! t

lxe(statemente!t
x)

speak about (np\s)/np
e ! (e ! t)
ly e lxe ((speak aboute!(e!t)

x) y)
themselves ((np\s)/np)\(np\s)

(e ! (e ! t))! (e ! t)
lPe!(e!t) lxe ((P x) x)



C.15. Syntactic proof

Let us first show that “Some statements speak about

themselves” belongs to the language generated by
this lexicon. So let us prove (in natural deduction)
the following:

(s/(np\s))/n , n , (np\s)/np , ((np\s)/np)\(np\s) ` s

(s/(np\s))/n n
/E

(s/(np\s))
(np\s)/np ((np\s)/np)\(np\s) \E

(np\s)
/E

s

some statut speaksabout themselves



C.16. Syntactic Proof to Semantic proof

(s/(np\s))/n n
/E

(s/(np\s))
(np\s)/np ((np\s)/np)\(np\s) \E

(np\s)
/E

s

Using the homomorphism from syntactic types to se-
mantic types we obtain the following intuitionistic de-
duction.

(e ! t)! (e ! t)! t e ! t !E
(e ! t)! t

e ! e ! t (e ! e ! t)! e ! t !E
e ! t !E

t



C.17. Semantic Proof to Lambda Term

(e ! t)! (e ! t)! t e ! t !E
(e ! t)! t

e ! e ! t (e ! e ! t)! e ! t !E
e ! t !E

t

So
(e!t)!(e!t)!t

Sta
e!t

!E

(So Sta)(e!t)!t
SpA

e!e!t
Refl

(e!e!t)!e!t
!E

(Refl SpA)e!t
!E

((So Sta) (Refl SpA))tO



C.18. Montague semantics.
Computing the semantics. 3/5

The syntax (e.g. a Lambek categorial grammar) yields
a l -term representing this deduction simply is

((some statements) (themselves speak about)) of type t



C.19. Montague semantics.
Computing the semantics. 4/5

⇣�
lPe!t lQe!t (9(e!t)!t (lxe(^(P x)(Q x))))

�

�
lxe(statemente!t

x)
�⌘

⇣�
lPe!(e!t) lxe ((P x)x)

�

�
ly e lxe ((speak aboute!(e!t)

x)y)
�⌘

# b�
lQe!t (9(e!t)!t (lxe(^t!(t!t)(statemente!t

x)(Q x))))
�

�
lxe ((speak aboute!(e!t)

x)x)
�

# b�
9(e!t)!t (lxe(^(statemente!t

x)((speak aboute!(e!t)
x)x)))

�

same

themselves



C.20. Montague semantics.
Computing the semantics. 5/5

This term represent the following formula of predi-
cate calculus (in a more pleasant format):

9x : e (statement(x) ^ speak about(x ,x))

This is a (simplistic) semantic representation of the
analysed sentence.



What about
Lexical Semantics

How can we deal with

polysemy

many senses

lacets alone sens



D.1. Examples of Lexical Issues

Short roadmap:

• Restriction of selection, polysemy, felicity

• System-F and our framework

• Determiners and quantification

• Classical GL constructions

• Co-predication and constraints

• Deverbals

• Fictive motion

• Integrating plurals and their readings

• Specific issues



D.2. Restriction of Selection and Polysemy

Selection

• Predicates (syntactically) select arguments
• The lexical field of those arguments is restricted
• Other arguments can be forced to behave as expected

Differences in acceptability

• The dog barked.
• The chair barked.
• The drill sergeant barked.
• The hawker barked.



D.3. Acceptability and Felicity: Semantics, Prag-
matics or Both ?

Montague: everything is acceptable

• All syntactically valid items have the same semantic
“meaning”

• We have to rely on pragmatics or interpretation

Too strong restriction from lexical semantics

• e is replaced by many sorts
• Barking dogs are licensed, everything else is blocked
• No language works that way

Creative uses and semantic licenses

• Fast runners, cars, computers. . . and phones
• A delicious game (Cooper)
• Expertly built (Adams)



D.4. System F

Types: Terms

• t (prop)

• many entity types ei

• type variables ↵, �, ...

• ⇧↵. T

• T 1 ! T 2

• Constants and vari-
ables for each type

• (f T!U
a
T ) : U

• (�xT . uU) : T ! U

• t
(⇤↵. T ){U} : T [U/↵]

• ⇤↵.uT : ⇧↵.T — no free
↵ in a free variable of u.

The reduction is defined as follows:
• (⇤↵.⌧){U} reduces to ⌧ [U/↵]

(remember that ↵ and U are types).

• (�x .⌧)u reduces to ⌧ [u/x ] (usual reduction).

intersection types



D.8. Basic facts on system F

Logicians / philosophers often ask whether system F is safe?

We do not really need system F but any type system
with quantification over types. F is syntactically the
simplest. (Polynomial Soft Linear Logic of Lafont
is enough)

Confluence and strong normalisation — requires the
comprehension axiom for all formulae of HA2 . (Gi-
rard 1971)

A concrete categorical interpretation with coherence
spaces that shows that there are distinct functions
from A to B .

Terms of type t with constants of mutisorted FOL (resp.
HOL) correspond to multisorted formulae of FOL
(resp. HOL)

Possiblilty to have coercive sub typing for ontologi-
cal inclusion (cats are animals etc.)

much better than D intersect
types



D.9. Examples of second order usefulness

Arbitrary modifiers: ⇤↵�xAy↵
f
↵!R .((readA!R!t

x) (f y))

Polymorphic conjunction:

Given predicates P
↵!t, Q�!t over respective types ↵,

�,
given any type ⇠ with two morphisms from ⇠ to ↵ and

to �

we can coordinate the properties P ,Q
of (the two images of) an entity of type ⇠:

The polymorphic conjunction &⇧ is defined as the term

&⇧ = ⇤↵⇤��P↵!t�Q�!t

⇤⇠�x⇠�f ⇠!↵�g ⇠!�.
(andt!t!t (P (f x))(Q (g x)))



Figure 1: Polymorphic conjunction: P(f (x))&Q(g(x))
with x : ⇠, f : ⇠ ! ↵, g : ⇠ ! �.

location
phys

tête espérant

fîntin
interesting

pote



D.10. Coercive subtyping for F (Luo, Soloviev,
Retoré)

Key property: at most one coercion between any two types.
Given coercions between base types.
Propagates through type hierarchy (unique possible restora-
tion).

coercive application
f : A ! B u : A0 A0 < A

(f a) : B
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A < B C < D

B ! A < C ! D

A < B

X ! A < X ! B

A < B

B ! X < A ! X

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

U < T [X ]
X not free in U

U < ⇧X . T [X ]

U < ⇧X . T [X ]

U < T [W ]

F



D.11. Coercive subtyping

Theorem: [hierarchical coherence] Whenever the above sys-
tem derives a < b where a and b are base types the coercion
a < b was a given coercion.

Coercive sub typing seems adequate to model ontological in-
clusions in particular between base types A car is a vehicle

These morphisms / coecions are identity on the object, hence
only one morphism may exist between two given base types.

Possibly there are more coercions than ontological inclusions.



D.12. In a Nutshell

The Generative Lexicon

• Pustejovsky, 1995 (and precursors)
• Discussed and refined by Asher, Cooper, Luo. . .
• Idea: the lexicon provides enough data to generate

word meanings in context

Framework sketch

• Types (and terms) from System-F
• Lexical entries are typed with many sorts
• Each word has a single main �-term
• Each word can have any number of optional �-terms
• Those terms are transformations, and are word-based
• Normal application is the same
• Transformations are used when types clash
• Types guide the selection of transformations

pow

ÏÏ

WHO



D.13. Lexicon v. Type

Why do we think transformations are lexical ?

(Rather than type-driven)

In a word: idiosyncrasy.

Consider:

(5) La classe est finie. (Event)
(6) La classe est fermée. (Location)
(7) La classe est de bon niveau. (People)
(8) La promotion est de bon niveau. (univoque: People)

In French, the two words do not have the same possible uses,
but represent exactly the same group of people.

(This also seems to be the case in American English.)

option tens
linked toNord

not to ty



D.14. Strong Idiosyncrasy

Linguistic constructs are not independent of the language

(Pleonasm ?)
Idioms and specific constructs are illustrations of this.

Differences of language
I have punctured

Differences of dialect
Un demi-fraise

Differences of jargon
Redresse la #16



D.15. Toy Example

Named towns are examples of highly polysemous words that
can be referred to for their location, population, and many other
aspects.

• Types : T (town), Pl (place), P (people)

• Usual predications:

1. Birmingham is spread out
2. Birmingham voted labour
3. 1 & 2

Lexical item Main �-term Modifiers
Birmingham birmingham

T
IdT : T ! T

t2 : T ! P

t3 : T ! Pl

is spread out spread out : Pl ! t
voted voted : P ! t

peuple
place



1. Type mismatch in spread out
Pl!t(Birmingham

T )), resolved
using t3 :

spread out
Pl!t(t3

T!Pl
Birmingham

T ))

2. The same, using t2 :

votedP ! t(t2
T!Pl

Birmingham
T )

3. We use a polymorphic conjunction operator, &⇧.
–as seen.

⇤⇠�x⇠ �f ⇠!↵�g ⇠!�(and(t!t)!t (spread out (f x))(voted (g x)))

After application, we have:

(and (spread out
Pl!t (t3

T!Pl
Birmingham

T ))

(votedPl!t (t2
T!P

Birmingham
T )))

SHB voted B



D.35. Dot Objects

”Dots” are very special objects in GL. Examples:

• The book was heavy and interesting.

• The lunch was delicious but took forever.

• The pressure is 120 psi and rising.

• The fair city of Perth, by the river Tay, is a bustling shop-
ping and trade centre that nevertheless retains a tranquil
atmosphere. . .

We do not differentiate between qualia, dot ”facets” and provide
transformations for everything, such as

f Phys
Book!', f Info

Book!I



D.36. Constraints

Possible/Hazardous co-predicative constructions

• Important point: this is not (only) about toy examples.
• *The salmon was fast and delicious.
• The salmon was lightning fast. It is delicious.
• Birmingham is a large city and voted labour.
• *Birmingham is a large city and won the cup.

Constraints on flexibility: FLEXIBLE v. RIGID

• Are lexically fixed on modifiers, computed for terms
• FLEXIBLE: anything goes.
• RIGID: nothing else can go (even the original typing).

Tour FootballClub rigid



Complex example

Lexicon

word principal �-term optional �-terms rigid/flexible
Birmingham Birmingham

T
IdT : T ! T (F)
t1 : T ! F (R)
t2 : T ! P (F)
t3 : T ! Pl (F)

is spread out spread out : Pl ! t
voted voted : P ! t
won won : F ! t

where the base types are defined as follows:
T town
F football club
P people
Pl place



Birmingham is spread out and won
Polymorphic AND yields:
(&⇧(spread out)Pl!t(won)P!t)
Forces ↵ := Pl and � := P , the properly typed term is

&⇧{Pl}{P}(spread out)Pl!t(won)P!t

It reduces to:
⇤⇠�x⇠ �f ⇠!↵�g ⇠!�(andt!t)!t (spread out (f x))(won (g x)))

Should apply to t1 and t3 – but t1 is RIGID.

Syntactical relaxation of semi-flexible constraints

• The salmon was lightning fast. It is delicious.
• Semi-flexible: acts as Rigid, but is reset by reference.

foot



Using this setting we modelled

counting puzzle
Icanied the books to the attic
because I read them all

deverbals with Livy Real
the signature cannot be read
the signature took ages

fictive motion
thepath descends for half an hour



But also formal semantic issues

quantification inamanysated
environment

plurals
III

The committee met
The team lost
The team had covid

system
N
count

46L



ANGL acquisition
machine learning atteins
extracting_information
fran a large lexical semantic
network
JeuxDeMots 4millionsatteins

100 millions al
labelled relations



Thanks to Richard Moot

implementation of trail
Categorial passer

MMCG DRT

papertagging
DEEP

proofnelfparsestructure LEARNING
efficiency



D.49. The Differences between our Proposal and
Related Formulations

Ontological Types

• Most other approaches
• Asher, Bekki, Pustejovski. . .
• Ontology (concept) provides types
• Types provide all adaptations (co-compositions, shifts,

accommodations. . . )

Lexical Sorts

• Basis for our approach
• Types provide a mechanism for recognising clashes
• Transformations come from the lexicon
• Idiosyncrasies in languages and dialects are possible
• Closer to the linguistic data

Cellency

classifiers Sign languages
Africa langage
Chinese Japons



Our approach

• Based on the latter
• General type-based transformations are still used
• The lexicon can overload type transformations
• (Simply for reasons of scale and practicality)

Other possibilities

• Nunberg & Sag, transfers of meaning
• Cooper: type records
• Luo: words as types

Meaning amputation
is POLYNOMIAL
Breduction in soft

linear

logic
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