

Coherence Semantics
for Pomset Logic

and a Self-Dual Modality

Christian Retoré (LIRMM, Univ Montpellier, CNRS)

LIPN, 20 mars 2024

1. Initial Motivation

Girard (93): — Would you be able to find with ”your before
connective” a self dual modality answering this?

“The obvious candidate for a classical semantics was of course coher-
ence spaces which had already given birth to linear logic; the main rea-
son for choosing them was the presence of the involutive linear negation.
However the difficulty with classical logic is to accommodate structural
rules (weakening and contraction); in linear logic, this is possible by con-
sidering coherent spaces ?X . But since classical logic allows contraction
and weakening both on a formula and its negation, the solution seemed
to require the linear negation of ?X to be of the form ?Y , which is a non-
sense (the negation of ?X is !X⊥ which is by no means of isomorphic
to a space?Y). Attempts to find a self-dual variant §Y of ?Y (enjoying
(§Y)⊥ = §Y⊥) systematically failed. The semantical study of classical
logic stumbled on this problem of self-duality for years.” (J.-Y. Girard A
new constructive logic classical logic, MSCS, 1991)

2. Today’s Motivation

Renewed interest in Pomset logic and on the related devel-
opments by Guglielmi and Straßburger Calculus of Structure
(SBV) and Deep Inference, a complete sequent calculus for
pomset logic published by Slavnov.

Further more, e.g. for process calculi it makes sense to re-
peat a sequence of operations.

3. The category COH : the privileged categor-
ical interpetation of linear logic

Categorical interpretation:

Formula/type : object

proof π ∶ A ⊢ B : morphism JπK ∶ A↦ B

whenever π ↝ π ′ : JπK = Jπ ′K.
Hom(A,B) corresponds to an object BA.

CCC intuitionistic logic

COHerence spaces: intially introduced to interpret second
order intutionistic logic because the endofunctor X Ð→ T [X]
can be represented as a coherence space.

Linear logic is issued from coherence spaces:

A→ B = (!A)⊸ B

4. The category COH. Objects: coherence spaces

A coherence space A= (∣A∣,˝A) is an undirected simple graph,
without loops nor multiple edges.

vertices are called tokens and they constitute the web ∣A∣
˝A is a binary symmetric and irreflexive relation on ∣A∣ called
strict coherence.

Given α,α ′ ∈ ∣A∣
α ˝ α ′[A] stands for α ˝A α ′

α ¨ α ′[A] stands for α ˝ α ′[A] or α = α ′

α ˚α ′[A] stands for α /̋ α ′[A] (and holds whenever α =α ′)

α ˇ α ′[A] stands for α /̈ α ′[A] (so α ≠ α ′).

The objects under consideration are the cliques of this graph,
i.e. the sets of pairwise related tokens. Cliques interpret
proofs of A up to cut-elimination / normalisation.

5. Involutive negation

There is a natural involutive negation: the complement graph:

If A = (∣A∣,˝A) then A⊥ = (∣A∣,˝⊥A) with α ˝ α ′[A⊥] iff α /̈ α ′[A]

Given α,α ′ ∈ ∣A∣ exactly one of the 3 relations below holds:

α ˇ α ′[A] or α = α ′ or α ˝ α ′[A]

α ˝ α ′[A⊥] or α = α ′ or α ˝ α ′[A]

6. The category COH. Arrows: linear maps

A linear morphism F from A to B is a morphism mapping
cliques of A to cliques of B such that:

• For all x ∈ A if (x′ ⊂ x) then F(x′) ⊂ F(x)
• For every family (xi)i∈I of pairwise compatible cliques

of A — that is to say (xi ∪ x j) ∈ A holds for all i, j ∈ I —
F(∪i∈Ixi) = ∪i∈IF(xi).

• For all x,x′ ∈ A if (x∪x′) ∈ A then F(x∩x′) = F(x)∩F(x′).

Linear functions from A to B can be viewed as

cliques in A⊥`B = A⊸ B (cf. later on).

7. Commutative Multiplicative Connectives

Multiplicative connectives A∗B: ∣A∗B∣= ∣A∣× ∣B∣. Unit =1= {∗}.

We may assume they are covariant in both their arguments.

Commutative multiplicative (binary) connectives, just two of
them:

A`B ˇ = ˝
ˇ ˇ ˇ ˝
= ˇ = ˝
˝ ˝ ˝ ˝

A⊗B ˇ = ˝
ˇ ˇ ˇ ˇ
= ˇ = ˝
˝ ˇ ˝ ˝

8. The category COH. Arrows as cliques of
the linear function space

A linear map F corresponds to

{(α,β) ∣ α ∈ ∣A∣β ∈ ∣B∣ β ∈ F({α})}
clique of A⊥`B = A⊸ B.

Linearity → for any clique x of A and any β ∈ F(x) there is a
unique α ∈ x such that β ∈ F({α}).
Conversely, given a clique f of A⊥`B a linear function can
be defined by

F(x) = {β ∈ ∣B∣∣∃α ∈ x(α,β) ∈ f}

Strict coherence in A⊥`B =A⊸B is characterised as follows:

(α,β)˝ (α ′,β ′)[A⊸B] whenever α ˝α ′[A] entails β ˝β ′[B].

9. Before (pomset logic)= Seq (deep inference)

But, there is another (non commutative) multiplicative con-
nective:

A◁B ˇ = ˝
ˇ ˇ ˇ ˝
= ˇ = ˝
˝ ˇ ˝ ˝

A▷B ˇ = ˝
ˇ ˇ ˇ ˇ
= ˇ = ˝
˝ ˝ ˝ ˝

(α,β)˝ (α ′,β ′)[A◁B] whenever
⎧⎪⎪⎪⎨⎪⎪⎪⎩

α ˝ α ′[A]
or
α = α ′ and β ˝ β ′[A]

Associative, self dual (A◁B)⊥ = A⊥◁B⊥ (no swap!)
Generalisation: ≺ finite (partial) order over I = {1, . . . ,n}, ΠIAi:

• web: ∣A1∣×⋯× ∣An∣
• strict coherence: (α1, . . . ,αn)˝ (α ′

1, . . . ,α ′
n)

when there exists i s.t. αi ˝ α ′
i and α j = α ′

j for all j ≺ i.

10. Pomset logic: proof net syntax (with links)

Axiom Par O Before / Times ⌦ Cut
Premisses None A and B A and B A and B K and K?

RnB link
a

a? AOB

`
A B

A/B

/
A B

A⌦B

⌦
A B

Cut

⌦
A A?

Conclusion(s) a and a? AOB A/B A⌦B None

Figure 3: The links of pomset logic as edge bicoloured graphs. In a proof structure, the conclusion of a link is the
premisse of at mots one link, and each premisse of a link is the conclusion of exactly one link. A formula that is not
the premisse of any link is said to be a conclusion of the proof structure. Cuts are conclusions K⌦K?, they never can
be the premisse of any link.

/

⌦

`
a a?

`
b b?

c c?

Figure 4: The proof net corresponding to the sequent calculus proof in Figure 2

There is an elegant proof net calculus where to map the sequent calculus proofs, defined in Section 8.1 identifying
the sequent calculus proofs that are essentially similar, like the ones obtained one from the other by commuting rules.
In addition to the par and time links, one needs a link for before. Although a Danos Regnier criterion is absolutely
possible, it is unnatural for this calculus, for which it is easier to use edge bicoloured graphs (blue and red) with
undirected B edges and R edges, some of them being being directed. Here are the links:

Proof nets are defined as the simple graphs defined from those links for which blue edges define a perfect match-
ing and without elementary circuits (directed cycles without twice the same vertex) alternating the B (axioms and
formulas) and the R edges (connectives).

However, there is a much more interesting view of multiplicative proof nets, the so-called handsome proof nets
that I first introduced for usual multiplicative linear logic [40, 44] do not have links, as we shall see in Section 4.1.
A handsome proof net a graph which does not depend from the associativity and commutativity of the connectives.
The logical formula is the R graph, the axioms linking atoms are the B edges and the criterion is: every alternating
elementary circuit contains a chord (that is an edge directed or not linking two points on the circuit but not itself in the
circuit).3

3In a proof net with links there cannot be chords on alternate elementary cycles. hence this criterion when applied to proof net with links is the
one we defined above for proof nets with links.

6

11. Correctness criterion

No alternate elementary circuit (directed cycle).

Axiom Par O Before / Times ⌦ Cut
Premisses None A and B A and B A and B K and K?

RnB link
a

a? AOB

`
A B

A/B

/
A B

A⌦B

⌦
A B

Cut

⌦
A A?

Conclusion(s) a and a? AOB A/B A⌦B None

Figure 3: The links of pomset logic as edge bicoloured graphs. In a proof structure, the conclusion of a link is the
premisse of at mots one link, and each premisse of a link is the conclusion of exactly one link. A formula that is not
the premisse of any link is said to be a conclusion of the proof structure. Cuts are conclusions K⌦K?, they never can
be the premisse of any link.

/

⌦

`
a a?

`
b b?

c c?

Figure 4: The proof net corresponding to the sequent calculus proof in Figure 2

There is an elegant proof net calculus where to map the sequent calculus proofs, defined in Section 8.1 identifying
the sequent calculus proofs that are essentially similar, like the ones obtained one from the other by commuting rules.
In addition to the par and time links, one needs a link for before. Although a Danos Regnier criterion is absolutely
possible, it is unnatural for this calculus, for which it is easier to use edge bicoloured graphs (blue and red) with
undirected B edges and R edges, some of them being being directed. Here are the links:

Proof nets are defined as the simple graphs defined from those links for which blue edges define a perfect match-
ing and without elementary circuits (directed cycles without twice the same vertex) alternating the B (axioms and
formulas) and the R edges (connectives).

However, there is a much more interesting view of multiplicative proof nets, the so-called handsome proof nets
that I first introduced for usual multiplicative linear logic [40, 44] do not have links, as we shall see in Section 4.1.
A handsome proof net a graph which does not depend from the associativity and commutativity of the connectives.
The logical formula is the R graph, the axioms linking atoms are the B edges and the criterion is: every alternating
elementary circuit contains a chord (that is an edge directed or not linking two points on the circuit but not itself in the
circuit).3

3In a proof net with links there cannot be chords on alternate elementary cycles. hence this criterion when applied to proof net with links is the
one we defined above for proof nets with links.

6

12. Cut elimination

Cut elimination preserves the criterion.

aartmaybe
viewed as K

A

y
B À B A À two cuts

in parallel
out 111 Oofthearts

A B À B A B À B two arts one
C L

YÉTI before the other1
ait

of the cuts

13. Semantics

A proof structure is interpreted as a set of tokens in the cor-
responding coherence space (experiment method).

Theorem: a proof structure is correct if and only if its inter-
pretation if a clique of the corresponding coherence space.

Intepretation is preserved by cut-elimination.

14. Sequent calculus?

` G ` D
dimix

` hG;Di
` G

entropy(G0 sub sp order of G)
` G0

` {a,a?}

` {A,G} ` {B,D}
⌦ / cut when A = B?

` {G,(A⌦B),D}

` G[{A,B}]
O(A · ·⇠ B)

` G[AOB]

` G[hA;Bi]
/(A !⇠ B)

` G[A/B]

Figure 1: A simple sequent calculus for pomset logic

` {a,a?}
` aOa?

` {b,b?}
` bOb?

` (aOa?)⌦ (bOb?) ` c,c?
dimix

` h(aOa?)⌦ (bOb?);{c,c?}i
entropy

` {h(aOa?)⌦ (bOb?);ci,c?}

Figure 2: Example a proof in pomset logic in the simple sequent calculus of Figure 1.

(A?)? = A
(AOB)? = (A?⌦B?)
(A/B)? = (A? /B?)
(A⌦B)? = (A?OB?)

Sequents of pomset logic are right handed and they are partially ordered multisets of formulas (pomsets of formu-
las). We assume those partial orders are described by operation from the one point order. Although we shall be much
more precise in the next section (Section 3.2) about partial orders, we need to define two operations on partial orders,
at least informally. Given two partially ordered multisets of formulas, G and D, let us define two orders whose domain
is the disjoint unions of the two domains and which preserve order on each domain:

• {G,D} their parallel composition: any two formulas one of them in G and the other one in D cannot be compared.
This operation is associative and commutative.

• hG;Di their series composition: any formula in G is smaller than any formula in D. This operation is associative,
but non commutative.

The expression G[X] denotes any pomset including a propositional variable X , and given a pomset D the expression
G[D] denotes the pomset obtained by substituting in G[X] the formula X with the pomset D as a term.

This sequent calculus extends classical multiplicative linear logic. Orders can be ”weakened” until the discrete
order is reached. When dimix is not used (hence entropy cannot be used either) this calculus is MLL.

As sequent calculus is best suited for classical logic, as intuitionistic logic fits in well with natural deduction,
multiplicative linear logic is better expressed with proof nets, and this is even more striking in the pomset logic case.
Nevertheless, for pedagogical reason we give a simple sequent calculus for pomset logic, which does not encompass
all proof nets to be later defined.

5

15. Sequent proof proof net example

` G ` D
dimix

` hG;Di
` G

entropy(G0 sub sp order of G)
` G0

` {a,a?}

` {A,G} ` {B,D}
⌦ / cut when A = B?

` {G,(A⌦B),D}

` G[{A,B}]
O(A · ·⇠ B)

` G[AOB]

` G[hA;Bi]
/(A !⇠ B)

` G[A/B]

Figure 1: A simple sequent calculus for pomset logic

` {a,a?}
` aOa?

` {b,b?}
` bOb?

` (aOa?)⌦ (bOb?) ` c,c?
dimix

` h(aOa?)⌦ (bOb?);{c,c?}i
entropy

` {h(aOa?)⌦ (bOb?);ci,c?}

Figure 2: Example a proof in pomset logic in the simple sequent calculus of Figure 1.

(A?)? = A
(AOB)? = (A?⌦B?)
(A/B)? = (A? /B?)
(A⌦B)? = (A?OB?)

Sequents of pomset logic are right handed and they are partially ordered multisets of formulas (pomsets of formu-
las). We assume those partial orders are described by operation from the one point order. Although we shall be much
more precise in the next section (Section 3.2) about partial orders, we need to define two operations on partial orders,
at least informally. Given two partially ordered multisets of formulas, G and D, let us define two orders whose domain
is the disjoint unions of the two domains and which preserve order on each domain:

• {G,D} their parallel composition: any two formulas one of them in G and the other one in D cannot be compared.
This operation is associative and commutative.

• hG;Di their series composition: any formula in G is smaller than any formula in D. This operation is associative,
but non commutative.

The expression G[X] denotes any pomset including a propositional variable X , and given a pomset D the expression
G[D] denotes the pomset obtained by substituting in G[X] the formula X with the pomset D as a term.

This sequent calculus extends classical multiplicative linear logic. Orders can be ”weakened” until the discrete
order is reached. When dimix is not used (hence entropy cannot be used either) this calculus is MLL.

As sequent calculus is best suited for classical logic, as intuitionistic logic fits in well with natural deduction,
multiplicative linear logic is better expressed with proof nets, and this is even more striking in the pomset logic case.
Nevertheless, for pedagogical reason we give a simple sequent calculus for pomset logic, which does not encompass
all proof nets to be later defined.

5

` G ` D
dimix

` hG;Di
` G

entropy(G0 sub sp order of G)
` G0

` {a,a?}

` {A,G} ` {B,D}
⌦ / cut when A = B?

` {G,(A⌦B),D}

` G[{A,B}]
O(A · ·⇠ B)

` G[AOB]

` G[hA;Bi]
/(A !⇠ B)

` G[A/B]

Figure 1: A simple sequent calculus for pomset logic

` {a,a?}
` aOa?

` {b,b?}
` bOb?

` (aOa?)⌦ (bOb?) ` c,c?
dimix

` h(aOa?)⌦ (bOb?);{c,c?}i
entropy

` {h(aOa?)⌦ (bOb?);ci,c?}

Figure 2: Example a proof in pomset logic in the simple sequent calculus of Figure 1.

(A?)? = A
(AOB)? = (A?⌦B?)
(A/B)? = (A? /B?)
(A⌦B)? = (A?OB?)

Sequents of pomset logic are right handed and they are partially ordered multisets of formulas (pomsets of formu-
las). We assume those partial orders are described by operation from the one point order. Although we shall be much
more precise in the next section (Section 3.2) about partial orders, we need to define two operations on partial orders,
at least informally. Given two partially ordered multisets of formulas, G and D, let us define two orders whose domain
is the disjoint unions of the two domains and which preserve order on each domain:

• {G,D} their parallel composition: any two formulas one of them in G and the other one in D cannot be compared.
This operation is associative and commutative.

• hG;Di their series composition: any formula in G is smaller than any formula in D. This operation is associative,
but non commutative.

The expression G[X] denotes any pomset including a propositional variable X , and given a pomset D the expression
G[D] denotes the pomset obtained by substituting in G[X] the formula X with the pomset D as a term.

This sequent calculus extends classical multiplicative linear logic. Orders can be ”weakened” until the discrete
order is reached. When dimix is not used (hence entropy cannot be used either) this calculus is MLL.

As sequent calculus is best suited for classical logic, as intuitionistic logic fits in well with natural deduction,
multiplicative linear logic is better expressed with proof nets, and this is even more striking in the pomset logic case.
Nevertheless, for pedagogical reason we give a simple sequent calculus for pomset logic, which does not encompass
all proof nets to be later defined.

5

16. Not derivable in sequent calculus

axiom
` abOa?

` G ` D
dimix

` Gb/D

` O[G1, . . . ,Gp]
entropy

⇢
with Gi:dicographs,
O,O0 SP-orders, O0 ⇢ O` O0[G1, . . . ,Gp]

` AbOG ` BbOD
⌦ / cut when A = B?

` GbO(A b⌦B)bOD

` G[AbOB]
O if A · ·⇠ B

` G[AOB]

` G[Ab/B]
/ if A !⇠ B

` G[A/B]

` G[A b⌦B]
⌦ if A �⇠ B

` G[A⌦B]

Figure 9: Dicograph sequent calculus with dicographs of atoms as sequents

aa?
b? b

c c?

d?d

f?f

e?
e

Figure 10: A proof net with no corresponding sequent calculus proof (found with Lutz Straßburger)

The SP-pomset sequent calculus presented in Figure 7 is clearly equivalent to the dicograph sequent calculus with
dicographs of atoms as sequents; in the dicograph sequent calculus, the symmetric series composiitons b⌦ may well
be used on contexts, as the bO and b/ rule, and all connective introduction rules consists in internalising the b⇤ operation
inside a formula as a ⇤ connective. This calculus is shown in Figure 9. Observe that entropy does not allow inclusion
of dicograph in general, but only of an outer SP-order; indeed, in general, dicograph inclusion does not preserve
correctness, as explained in Proposition 11.

An induction on either sequent calculus given in this paper shows that:

Proposition 19. Let d be a proof a dicograph sequent R, and let pd = (B,R) be the corresponding proof net. Then
the axioms and atoms of pd can be partitioned into two classes P1 = (ai�a?i)i2I1 and P2 = (ai�a?i)i2I2 in such a way
that either:

1. there are only arcs from P1 to P2

2. the only edges between P1 and P2 are a b⌦ connection: calling R1 = R �P1 and R2 = R �P2 , R1 = A1bOT1,
R1 = A2bOT2, and R = (A1 b⌦A2)bOT1bOT2

18

17. Folding/unfolding 1

aa?

g

g? b?

b

(a) p1

aa?

g

g?

b `b?
`

b

b?

(b) p2

a `a?

`
aa?

g ` g?
`g

g?

b `b?
`

b

b?

(c) p3

((a `a?)⌦ (g ` g?))/ (b `b?)

/
⌦

`
aa?

`g

g?

`

b

b?

(d) p4

Figure 14: Folding a dicograph proof net into an SP proof net step by step (p1,p2,p3,p4) — the conclusions are the
black vertices.

27

18. Folding/unfolding 2

aa?

g

g? b?

b

(a) p1

aa?

g

g?

b `b?
`

b

b?

(b) p2

a `a?

`
aa?

g ` g?
`g

g?

b `b?
`

b

b?

(c) p3

((a `a?)⌦ (g ` g?))/ (b `b?)

/
⌦

`
aa?

`g

g?

`

b

b?

(d) p4

Figure 14: Folding a dicograph proof net into an SP proof net step by step (p1,p2,p3,p4) — the conclusions are the
black vertices.

27

19. Folding/unfolding 3
aa?

g

g? b?

b

(a) p1

aa?

g

g?

b `b?
`

b

b?

(b) p2

a `a?

`
aa?

g ` g?
`g

g?

b `b?
`

b

b?

(c) p3

((a `a?)⌦ (g ` g?))/ (b `b?)

/
⌦

`
aa?

`g

g?

`

b

b?

(d) p4

Figure 14: Folding a dicograph proof net into an SP proof net step by step (p1,p2,p3,p4) — the conclusions are the
black vertices.

27

20. Folding/unfolding 4

aa?

g

g? b?

b

(a) p1

aa?

g

g?

b `b?
`

b

b?

(b) p2

a `a?

`
aa?

g ` g?
`g

g?

b `b?
`

b

b?

(c) p3

((a `a?)⌦ (g ` g?))/ (b `b?)

/
⌦

`
aa?

`g

g?

`

b

b?

(d) p4

Figure 14: Folding a dicograph proof net into an SP proof net step by step (p1,p2,p3,p4) — the conclusions are the
black vertices.

27

21. Handsome proof nets

Proof net

vertices atoms a a⊥

B edges axioms, perfect matching
R directed cograph (directed part: series parallel

partial order; symmetric part: cograph; weak
transitivity between both)

Criterion: every alternate elementary circuit contains a chord
(an edge or an arc not in the circuit but between two vertices
of the circuit)

22. A handsome proof net

aa?

g

g? b?

b

(a) p1

aa?

g

g?

b `b?
`

b

b?

(b) p2

a `a?

`
aa?

g ` g?
`g

g?

b `b?
`

b

b?

(c) p3

((a `a?)⌦ (g ` g?))/ (b `b?)

/
⌦

`
aa?

`g

g?

`

b

b?

(d) p4

Figure 14: Folding a dicograph proof net into an SP proof net step by step (p1,p2,p3,p4) — the conclusions are the
black vertices.

27

23. Rewriting

rule name dicograph dicograph0

b⌦ bO4 (X bO Y) b⌦ (U bO V) (X b⌦ U) bO (Y b⌦ V)

⌦O3 (X bO Y) b⌦ U (X b⌦ U) bO Y

⌦O2 Y b⌦ U U bO Y

⌦/4 (X b/ Y) b⌦ (U b/ V) (X b⌦ U) b/ (Y b⌦ V)

⌦/3l (X b/ Y) b⌦ U (X b⌦ U) b/ Y

⌦/3r Y b⌦ (U b/ V) U b/ (Y b⌦ V)

⌦/2 Y b⌦ U U b/ Y

/O4 (X bO Y) b/ (U bO V) (X b/ U) bO (Y b/ V)

/O3l (X bO Y) b/ U (X b/ U) bO Y

/O3r Y b/ (U bO V) U bO (Y b/ V)

/O2 Y b/ U U bO Y

Figure 6: A complete rewriting system for dicograph inclusion. Beware that the first rule b⌦bO4 marked with a
symbol is wrong when the rewriting rule is viewed as a linear implication on formulas: (X bOY) b⌦ (U bOV) 6((X b⌦
U)bO(Y b⌦V) although all other rewriting rules are correct when viewed as linear implications.

3.5 A sequent calculus attempt with SP pomset of formulas
Now let us try to extend multiplicative linear logic with a non commutative multiplicative self dual connective (rather
than to restrict existing connective to be non commutative), and let us also try to deal with partially ordered multisets
of formulas, with A /B corresponding to ”the subformula A (a resource) comes before the subformula B (another
resource)”.

That way one may think of an order on computations:

a cut between (A/B)? and A? /B? reduces to two smaller cuts A�cut�A? and B�cut�B? with the cut
on A being prior to the cut on B, while

a cut between (AOB)? and A?⌦B? reduces to two smaller cuts A�cut�A? and B�cut�B? with the cut
on A being in parallel with the cut on B.

This makes sense when linear logic proofs are viewed as programs and cut-elimination as computation.
Doing so one may obtain a sequent calculus using partially ordered multisets of formulas as in [36] but if one wants

a sequent with several conclusions that are partially ordered to be equivalent to a sequent with a unique conclusion,
one has to only consider SP partial orders of formulas, as defined in Subsection 3.2 with parallel composition noted bO
and series composition noted b/.

If we want all formulas in the sequent to be ordered the calculus should handle right handed sequents i.e. be
classical.5

As seen above, we can represent this SP-ordered multiset of formulas endowed with an SP order by an SP term
whose points are the formulas and such a term is unique up to the commutativity of bO and the associativity of bO and
b/.

5Lambek calculus is intuitionistic and when it is turned into a classical systems, formulas are endowed with a cyclic order,[56, 1, 18], i.e. a
ternary relation which is not an order and which is quite complicated when partial — see the ”seaweeds” that first appeared in [53] and subsequently
used by Abrusci and Ruet, [3] and by de Groote and Lamarche [5].

10

24. Relation to Deep Inference

Starting with ⊗i(ai`a⊥i)

some rules handling 1 the common unit of ⊗,◁,`.

Equivalent to SBV and you easily get SBV ”cut” elimination
(removal of a ↑ 1) when c⊗c⊥ vanishes.

25. Not derivable in Deep Inference

Tito N’Guyen results (partly with Lutz Strassburger)

Conclusion Joyeux anniversaire Christian !

Retoré’s Pomset Logic (PL) and Guglielmi’s BV: 2 logics over the same formulas,
from the 1990s, conservatively extending Multiplicative Linear Logic with Mix

Our result [N. & Straßburger]: refuting Guglielmi’s two-decades-old conjecture
• There is some formula A such that BV ̸⊢ A but PL ⊢ A.

A = ((a ▹ b) ⊗ (c ▹ d)) ` ((e ▹ f) ⊗ (g ▹ h)) ` (a⊥ ▹ h⊥) ` (e⊥ ▹ b⊥) ` (g⊥ ▹ d⊥) ` (c⊥ ▹ f⊥)

Causally meaningful variant (K.–S.): (((p1)⊥ ▹ q1) ⊗ ((r1)⊥ ▹ s1)) ` (((q1)⊥ ▹ r1) ⊗ ((s1)⊥ ▹ p1))

• Moreover, “BV ⊢ A?” is NP-complete while “PL ⊢ A?” is Σ
p
2 -complete.

• These logics exemplify two proof-theoretic paradigms going by necessity
beyond the sequent calculus: proof nets and deep inference.

• We realized that the conjecture was very probably false thanks to connections
with mainstream graph theory (also initiated by Retoré!).

16/16

26. Slavnov’s — complete but ad hoc —
sequent calculus

Very complex: if n conclusions, pairs of tuples of length k for
all k ⩽ n/2.

Only unary rules but mix.

Intuition: dependent alternate elmentary paths between k
conclusions and k other conclusions are known.

One very itneresting idea: usual commutatives `,⊗ plus a
pair of dual non commutative connective: ~̀ and ~⊗, and ◁ is
a degenerate case, when both are equal.

27. Conclusion on sequent calculus

Not yet!

But some new ideas (like Slavnov ~̀ and ~⊗),

and some graph theoretical ideas as well.

However from 1991, there are moments when think i can
solve this problem...

28. A selfdual modality for contraction/duplication
with ”<”: What we are looking for?

Usual modalities:

!A ⊸ (!A⊗!A) ?A ⟜ ?A`?A
⫰ o ⫯ m
1 A 1 A

Self dual contraction/duplication Flag:

<∣A⟜ linear iso⊸ (<∣A◁ <∣A)

Of course there is no relation between <∣A and 1, otherwise,
with a self dual modality, the system would collapse.

29. Continuous functions from Cantor space
to a discrete topological space

2ω , infinite words on 2, with standard order and topology:

• usual total lexicographical order:

w1 <w2 iff ∃m ∈ 2∗ ∃w′
1,w

′
2 ∈ 2ω w1 =m0w′

1 and w2 =m1w′
2

• usual product topology generated by clopen sets (Um)m∈2∗

Um = {w ∈ 2ω ∣∃w′ ∈ 2ω w =mw′}

Continuous function from 2ω to a set M (discrete topology) =
finite binary tree with M-labelled leaves
without two sister leaves with the same M-label.
gtM generic trees over M = binary tree representing continu-
ous functions 2ω ↦M.
Let f ∈ gtM for w ∈ 2ω there is a unique prefix of w that is a
root-to-leaf path of f . If the M-label is a then f (w) = a.

30. Justification

2ω = ∪α∈M f −1({α})

{α} are clopen sets and so is f −1({α}).

Hence one can extract a finite covering of 2ω from the f −1({α})
(compacity of 2ω).

So the function has finitely many values.

Each of these f −1({α}) can be written as a finite union of
base clopen sets and a finite union of finite union is a finite
union, and this gives the tree structures.

Observe that two base clopen sets never have a non trivial
intersection: their intersection is either empty or one contains
the other.

31. A generic tree, i.e. continuous function
from 2ω to a set M

A binary tree with labels in M without sisters leaves with a
common label, like:

[[a,b],[b,[a,c]]]

corresponds to a unique continuous function from 2ω to M:

f (00w) = a

f (01w) = b

f (10w) = b

f (110w) = a

f (111w) = c

32. A remark on continuous functions from
the Cantor space to a discrete topological space

Let f ,g ∈ gtM.
If f ≠ g, then there exists w ∈ 2ω such that

f (w) ≠ g(w) and ∀w′ <w f (w′) = g(w′)

Consider the two continuous maps:

(f ,g) ∶ 2ω ↦ M×M (product of discrete topology)
w ↦ (f (w),g(w))

∆ ∶ M×M ↦ 2 (discrete topology)
(a,b) ↦ 1 si a = b

0 si a ≠ b

∆○(f ,g) is continuous, hence (∆○(f ,g))−1(0) is a clopen set.
It has a lowest element w0 = u(0)ω with
f (w0) ≠ g(w0) and f (w′) = g(w′) for all w′ ≺w0.

33. The flag modality

Web of <∣A: gt∣A∣

the continuous functions from 2ω to ∣A∣ the web of A.

Observe that if ∣A∣ is countable so is gt∣A∣.

Coherence f ˝ g[<∣A] with f ,g ∈ ∣<∣A = gt∣A∣ whenever

∃w ∈ 2ω
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f (w)˝ g(w)[A]
and
∀w′ <w f (w′) = g(w′)

34. Flag is self dual

The modality <∣ is self-dual, i.e. (<∣A)⊥ ≡ <∣(A⊥)

Those two coherence spaces obviously have the same web.

Let f ≠ g be two distinct continuous functions from 2ω to ∣A∣.

Let w ∈ 2ω satisfying f (w) ≠ g(w) and ∀w′ <w. f (w′) = g(w′).

Either f (w)˝ g(w)[A] and therefore f ˝ g[<∣A]

or f (w)˝ g(w)[A⊥] and therefore f ˝ g[<∣(A⊥)]

Hence when f ≠ g either f ˝ g[<∣A] or f ˝ g[<∣(A⊥)].

So <∣A⊥ = (<∣A)⊥.

35. Linear iso <∣A ○−−○ (<∣A◁ <∣A)

C = {(h,(h0,h1))∣∀w ∈ 2ω h(0w) = h0(w) and h(1w) = h1(w)}

defines a linear isomorphism between <∣A and <∣A < <∣A.

bijection between the webs, i.e. between

pairs of continuous functions from 2ω to ∣A∣

continuous functions from 2ω to ∣A∣.

36. Linear iso <∣A ○−−○ (<∣A◁ <∣A)

Given (h,(h0,h1)) and (g,(g0,g1)), both in C we have to prove
that:

(1) ∶ h ˝ g[<∣A] ⇐⇒ (h0,h1)˝ (g0,g1)[<∣A◁ <∣A] ∶ (2)

37. Linear iso <∣A ○−−○ (<∣A◁ <∣A)

(1)Ô⇒ (2) We assume that h ˝ g[<∣A],

i.e. that ∃w ∈ 2ω h(w)˝ g(w) and ∀v<w h(v) = g(v).

Either w = 0w′ or w = 1w′.

In both cases (h0,h1)˝ (g0,g1)[<∣A◁ <∣A]

0. If w = 0w′ we have h0 ˝ g0[<∣A]:
• h0(w′)˝ g0(w′) since h0(w′) = h(0w′) = h(w), g(w) =

g(0w′) = g0(w′) and h(w)˝ g(w).
• h0(v′)=g0(v′) for all v′<w′; indeed, 0v′ <0w′ =w hence

h0(v′) = h(0v′) = g(0v′) = g0(v′).

38. Linear iso <∣A ○−−○ (<∣A◁ <∣A)

(1)Ô⇒ (2) We assume that h ˝ g[<∣A],

i.e. that ∃w ∈ 2ω h(w)˝ g(w) and ∀v<w h(v) = g(v).

1. If w = 1w′ then h1 ˝ g1[<∣A] and h0 = g0:

• h1 ˝ g1[<∣A]
– h1(w′)˝g1(w′) since h1(w′)=h(1w′)=h(w), g1(w′)=

g(1w′) = g(w), h(w)˝ g(w).
– h1(v′)=g1(v′) for all v′<w′; indeed, h1(v′)=h(1v′)=

g(1v′) = g1(v′) since 1v′<1w′ =w.
• h0 = g0 since h0(u) = h(0u) = g(0u) = g0(u) because

0u < 1w′ =w.

39. Linear iso <∣A ○−−○ (<∣A◁ <∣A)

(2)Ô⇒ (1) We assume that (h0,h1) ˝ (g0,g1)[<∣A◁ <∣A] i.e.
that either 0. h0 ˝ g0[<∣A] or 1. (h0 = g0 and h1 ˝ g1[<∣A]).

We first show h ˝ g[<∣A] in case 0.

0. If h0 ˝ g0[<∣A] then there exists w′ such that h0(w′) ˝
g0(w′) and h0(v′) = g0(v′) for all v′<w′ and h ˝ g[<∣A]. In-
deed:

• h(0w′) ˝ g(0w′) because h(0w′) = h0(w′), g(0w′) =
g0(w′) and h0(w′)˝ g0(w′).

• for all u < 0w′, one has h(u) = g(u); indeed, if u <
0w′ then u = 0u′ with u′ <w′, so h(u) = h(0u′) = h0(u′),
g(u)= g(0u′)= g0(u′) and h0(u′)= g0(u′) because u′ <
w′.

40. Linear iso <∣A ○−−○ (<∣A◁ <∣A)
(2)Ô⇒ (1) We assume that (h0,h1) ˝ (g0,g1)[<∣A◁ <∣A] i.e.
that either 0. h0 ˝ g0[<∣A] or 1. (h0 = g0 and h1 ˝ g1[<∣A]).
We now show that h ˝ g[<∣A] in case 1.

1. If h1 ˝ g1[<∣A] and h0 = g0 then there exists w′ such that
h1(w′)˝ g1(w′) and h1(v′) = g1(v′) for all v′ < w′, and for
all u, h0(u) = g0(u). We have h ˝ g[<∣A]:

• h(1w′)˝g(1w′)[A]; indeed h(1w′)=h1(w′) and g(1w′)=
g1(w′) and g1(w′)˝ h1(w′).

• for all v<1w′ one has h(v)=g(v) since v=0u or v=1u′
and

– if v = 0u then h(v) = h(0u) = h0(u) = g0(u) = g(0u) =
g(v).

– if v = 1u′ then u′ <w′ and therefore h(v) = h(1u′) =
h1(u′), h1(u′)=g1(u′) (because u′ <w′), and g(v)=
g(1u′) = g1(u′).

41. Explanation

This is because, so to speak, f is f0◁ f1.

I initially defined the web of <∣A as ◁i∈QA (Q copies of ∣A∣, a to-
ken was a function from Q to A) and Achim young sugqested
to use 2ω to get a finite representation of the tokens.

42. A is a retract of Flag A

Let ρ = {α,α)∣α ∈ ∣A∣} where α is the constant continuous
function from 2ω to ∣A∣ mapping every infinite word to α ∈ ∣A∣.

ρ is linear. It dual σ = {(α,α)∣α ∈ ∣A∣} is linear as well.

ρ ○σ is IdA,

while σ ○ρ ⊊ Id<∣A (identity, butonly for constant functions).

43. Flag is functorial

Given ` ∶ A→ B defines <∣` ∶ <∣A→ <∣B by the linear map:

<∣` = {(f ,g)/∀w ∈ 2ω(f (w),g(w)) ∈ `}

This makes <∣ an endo-functor of COH with linear maps.

This is not difficult but a bit tedious to prove.

44. Concluding question: syntax?

Pomset logic is better defined with (handsome) proof nets,

or as a rewriting system like Deep Inference.

The design of a self dual modality should perhaps proceed
with handsome proof nets

whose correction is equivalent to their interpretability in co-
herence spaces.

However modalities are complicated in the the proof net frame-
work

an exception being the essential nets of Lamarche for intu-
itionistic logic.

Guglielmi proposed in the last years several versions of a
self dual modality with deep inference coherence semantics
should be a guideline to find the right one, if any.

45. References

• Christian Retoré Réseaux et séquents ordonnés, Thèse de Doc-
torat, spécialité Mathématiques, Université Paris 7, 1993. https:

//theses.hal.science/tel-00585634

• Christian Retoré Pomset logic: a non-commutative extension of
classical linear logic In J. R. Hindley and Ph. de Groote, edi-
tors, Typed Lambda Calculus and Applications, TLCA’97, pages
300–318, vol. 1210 of LNCS, Springer 1997. https://doi.org/

10.1007/3-540-62688-3_43

• Christian Retoré Pomset Logic: the other approach to non com-
mutativity in logic In C. Casadio and P. J. Scott (eds.), Joachim
Lambek: The Interplay of Mathematics, Logic, and Linguistics, Out-
standing Contributions to Logic 20,2021 pp. 299-345 https://

doi.org/10.1007/978-3-030-66545-6_9

• Christian Retoré Flag: a Self-Dual Modality for Non-Commutative
Contraction and Duplication in the Category of Coherence Spaces
In Proceedings Linearity &TLLA 2020, Journal reference: EPTCS
353, 2021, pp. 157-174 DOI: https://doi.org/10.4204/EPTCS.
353.8

https://theses.hal.science/tel-00585634
https://theses.hal.science/tel-00585634
https://doi.org/10.1007/3-540-62688-3_43
https://doi.org/10.1007/3-540-62688-3_43
https://doi.org/10.1007/978-3-030-66545-6_9
https://doi.org/10.1007/978-3-030-66545-6_9
https://doi.org/10.4204/EPTCS.353.8
https://doi.org/10.4204/EPTCS.353.8

