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1. Initial Motivation

Girard (93): — Would you be able to find with "your before
connective” a self dual modality answering this?

“The obvious candidate for a classical semantics was of course coher-
ence spaces which had already given birth to linear logic; the main rea-
son for choosing them was the presence of the involutive linear negation.
However the difficulty with classical logic is to accommodate structural
rules (weakening and contraction); in linear logic, this is possible by con-
sidering coherent spaces ?X. But since classical logic allows contraction
and weakening both on a formula and its negation, the solution seemed
to require the linear negation of ?X to be of the form ?Y, which is a non-
sense (the negation of ?X is !X* which is by no means of isomorphic
to a space?Y). Attempts to find a self-dual variant §Y of ?Y (enjoying
(§Y)* = §y+ ) systematically failed. The semantical study of classical
logic stumbled on this problem of self-duality for years.” (J.-Y. Girard A
new constructive logic classical logic, MSCS, 1991)



2. Today’s Motivation

Renewed interest in Pomset logic and on the related devel-
opments by Guglielmi and StraBburger Calculus of Structure
(SBV) and Deep Inference, a complete sequent calculus for
pomset logic published by Slavnov.

Further more, e.g. for process calculi it makes sense to re-
peat a sequence of operations.



3. The category COH : the privileged categor-
ical interpetation of linear logic

Categorical interpretation:
Formula/type : object

proof w: A+ B : morphism [z]:A~ B
whenever ©t ~ n’ : [n] = [n'].

Hom(A,B) corresponds to an object BA.
CCC intuitionistic logic

COHerence spaces: intially introduced to interpret second
order intutionistic logic because the endofunctor X — T[X]
can be represented as a coherence space.

Linear logic is issued from coherence spaces:

A->B=(1A) —-B



4. The category COH. Objects: coherence spaces

A coherence space A =(|A],~4) is an undirected simple graph,
without loops nor multiple edges.

vertices are called tokens and they constitute the web |A|

~4 is a binary symmetric and irreflexive relation on |A| called
strict coherence.

Given o, o’ € |A|
o~ o'[A] stands for o ~4 o'

o'[A] stands for a ~ a’[A] or o = o’
]

o'[A

o a'[A] stands for a ¢ a’[A] (so o = a').

stands for o 4 a’[A] (and holds whenever a = a’)

The objects under consideration are the cliques of this graph,
i.e. the sets of pairwise related tokens. Cliques interpret
proofs of A up to cut-elimination / normalisation.




5. Involutive negation

There is a natural involutive negation: the complement graph:

If A=(|A],~4) then AL = (|A|,~;) with oc ~ o/ [AL] iff ot & o/ [A]

Given a, o' €|A| exactly one of the 3 relations below holds:

o—a'[Alora=o'ora~a'[A]

oa~a'[At]ora=a’or a~a'[A]



6. The category COH. Arrows: linear maps

A linear morphism F from A to B is a morphism mapping
cliques of A to cliques of B such that:

* Forall xeA if (x' cx) then F(x") c F(x)

 For every family (x;); of pairwise compatible cliques
of A — that is to say (x;ux;) €A holds for all i,jel —
F(Ujerxi) = VierF (x;).

* Forallx,x" e A if (xux’) eA then F(xnx') = F(x)nF(x').

Linear functions from A to B can be viewed as

cliques in At B=A — B (cf. later on).



7. Commutative Multiplicative Connectives

Multiplicative connectives A B: |A * B| =|A|x |B|. Unit=1={x}.
We may assume they are covariant in both their arguments.

Commutative multiplicative (binary) connectives, just two of
them:




8. The category COH. Arrows as cliques of
the linear function space

A linear map F corresponds to
{(a,B) [ac|A|Be|B| BeF({a})}
clique of At %¥B=A — B.

Linearity — for any clique x of A and any 8 € F(x) there is a
unique a €x such that B e F({a}).

Conversely, given a clique f of AL % B a linear function can
be defined by

F(x)={B ¢|B||3aex(a,B) € f}

Strict coherence in A1 ¥ B=A — B is characterised as follows:

(a,B) ~(a',B")[A — B] whenever o ~ a/[A] entails B ~ B[ B].



9. Before (pomset logic)= Seq (deep inference)
But, there is another (non commutative) multiplicative con-
nective:

A9B| =]~ AbB| =]~

—~ ~ | N~ | M — ~ | ~ | v

= ~ = ™ = — = ™\

™ N~ | A | M ~\ N | AN | Y

o~ a'[A]
(a,B) ~ (a/,B")[A< B] whenever { or

o=0a'and B~ B'[A]
Associative, self dual (A< B)! =A' < B* (no swap!)
Generalisation: < finite (partial) order over I ={1,...,n}, II'A;:

« web: |A;|x---x|A,]

« strict coherence: (a,...,0) ~ (of,...,0p)
when there exists i s.t. a; ~ o/ and o = o} for all j <.



10. Pomset logic: proof net syntax (with links)

Axiom Par @ Before <« Times ®
Premisses None A and B A and B
B A B
7 4
a n A
RnB link a w8 A<B
Conclusion(s) | a and a* A®B A<B




11. Correctness criterion

No alternate elementary circuit (directed cycle).




12. Cut elimination

Cut elimination preserves the criterion.
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13. Semantics

A proof structure is interpreted as a set of tokens in the cor-
responding coherence space (experiment method).

Theorem: a proof structure is correct if and only if its inter-
pretation if a clique of the corresponding coherence space.

Intepretation is preserved by cut-elimination.



14. Sequent calculus?

ET A 4 T ,
———  dimix —— entropy(I” sub sp order of I"
H(TA) o entropy (I subsp )
- {a,al}

F{A,T} F{B,A}
F{I,(A®B),A}

® /cut when A = B+

FT{A,B}] 2(A~B) I[(A;B)] qAZB)
- IJA®B] FTA<B]



15. Sequent proof proof net example

F{a,at} H{b,b"}
Faat Fbobt
F (@9a’) ® (b9br) Feet
- - T dimix
F {((@pat) @ (bob); {c,ct}) .
entropy
F {((@sat) @ (bt );c), et}
F{a,a*} H{b,b"}
Fasat Fbobt
) Feet
— n T dimix
F{(@sa™) @ (beb™):{c,c"})
entropy

F{{(@ga") @ (b ):c),c}



16. Not derivable in sequent calculus
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(c) m3

19. Folding/unfolding 3




20. Folding/unfolding 4

o
(T at)e (yBy) (BB BL)

(d) my




21. Handsome proof nets

Proof net

vertices atoms a a*
B edges axioms, perfect matching

R directed cograph (directed part: series parallel
partial order; symmetric part: cograph; weak
transitivity between both)

Criterion: every alternate elementary circuit contains a chord
(an edge or an arc not in the circuit but between two vertices
of the circuit)
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23. Rewriting

rule name dicograph dicograph’

B %X %Y ® U B V)-X & U % (Y @ V)
@93 (X B Y) ® U X ® U % Y
®792 Y ® U Uu » Y
@4 (X 3 YY) ® U 3 V)~»X & U 3 ¥ @ V)
@Bl (X J YY) @ U X ® U 3 Y
®<3r Y ® (U 3 V) U 3 (¥ @ v)
@2 Y & U Uu 3 v
o4 (X B Y) 3 U B V)~ (X d U ®» (¥ 3 V)
w93l (X ® Y) I U X 3 U % Y
%3 Y 3 (U ® V) U % (¥ 3 V)
<92 Y 3 U Uu » v



24. Relation to Deep Inference

Starting with ®;(a; ¥ a)

some rules handling 1 the common unit of ®,<,%.

Equivalent to SBV and you easily get SBV “"cut” elimination
(removal of a 1 1) when ¢ ® ¢t vanishes.




25. Not derivable in Deep Inference

Tito N'Guyen results (partly with Lutz Strassburger)

Conclusion

Retoré’s Pomset Logic (PL) and Guglielmi’s BV: 2 logics over the same formulas,

from the 1990s, conservatively extending Multiplicative Linear Logic with Mix
Our result [N. & StraBburger]: refuting Guglielmi’s two-decades-old conjecture
o There is some formula A such that BV I/ A but PL - A.
A= ((a<b)® (cad)) B ((e<f) @ (gah)) B (a* <ht) B (e- abb) B (g* <d) B (c* af)
Causally meaningful variant (K-S.): (((p1)* <¢") ® ((r")* <s") ® (((g")*F <) @ ((sH)* «ph))
e Moreover, “BV - A?” is NP-complete while “PL - A?” is £5-complete.




26. Slavnov’s — complete but ad hoc —
sequent calculus

Very complex: if n conclusions, pairs of tuples of length k for
all k<n/2.

Only unary rules but mix.

Intuition: dependent alternate elmentary paths between k
conclusions and k other conclusions are known.

One very itneresting idea: usual commutatives %,® plus a
pair of dual non commutative connective: % and ®, and < is
a degenerate case, when both are equal.



27. Conclusion on sequent calculus

Not yet!

But some new ideas (like Slavnov 3 and ®),

and some graph theoretical ideas as well.

However from 1991, there are moments when think i can
solve this problem...




28. A selfdual modality for contraction/duplication
with ”<”: What we are looking for?

Usual modalities:

A — (IA®IA) 24 o 7244
Lo [
1 A 1 A

Self dual contraction/duplication Flag:

YA o— linear iso — (A< JA)

Of course there is no relation between 94 and 1, otherwise,
with a self dual modality, the system would collapse.



29. Continuous functions from Cantor space
to a discrete topological space

29 infinite words on 2, with standard order and topology:
« usual total lexicographical order:

wi <wy iff Ime 2" Iwi,wh € 2® wy =mOw] and wy = mlw}

» usual product topology generated by clopen sets (U,,,)

me2*

Up={we2?3In €2 w=mw'}

Continuous function from 2% to a set M (discrete topology) =
finite binary tree with M-labelled leaves
without two sister leaves with the same M-label.

gty, generic trees over M = binary tree representing continu-
ous functions 29 — M.

Let f e gt), for we 29 there is a unique prefix of w that is a
root-to-leaf path of f. If the M-label is a then f(w) =a.



30. Justification

29 = Ugem f 1 ({a})
{a} are clopen sets and so is f~!({a}).

Hence one can extract a finite covering of 22 from the f~!({a})
(compacity of 29).

So the function has finitely many values.

Each of these f~!({a}) can be written as a finite union of
base clopen sets and a finite union of finite union is a finite
union, and this gives the tree structures.

Observe that two base clopen sets never have a non ftrivial
intersection: their intersection is either empty or one contains
the other.




31. A generic tree, i.e. continuous function
from 2% to a set M

A binary tree with labels in M without sisters leaves with a
common label, like:

[[a,b],[b,[a;c]]]

corresponds to a unique continuous function from 29 to M:
f(00w) =a

f(01w) =b

f(10w) =b

f(110w) =a

f(11lw)=¢




32. A remark on continuous functions from
the Cantor space to a discrete topological space

Let f,g € gty,.
If f+g,then there exists w e 29 such that

fw)zg(w)and Vuw' <w f(w')=g(w')
Consider the two continuous maps:

(f,8): 29 — MxM (product of discrete topology)
wo= (f(w),g(w))

A: MxM ~ 2 (discrete topology)
(a,b) = 1 Si a= b
Osia+b

Ao (f,g) is continuous, hence (Ao (f,g))~1(0) is a clopen set.

It has a lowest element wy = u(0)® with
f(wo) #g(wp) and f(w') = g(w') for all w' < wy.




33. The flag modality

Web of <1A gt|A|
the continuous functions from 2% to |A| the web of A.
Observe that if |A| is countable so is gty

Coherence f ~ g[ {A] with f, g €|4A = gt whenever

and

{ fw) ~g(w)[A]
Jw e 29
yw'<w  f(w) =g ()



34. Flag is self dual

The modality 1 is self-dual, i.e. (JA)* = §(A*)

Those two coherence spaces obviously have the same web.
Let f + g be two distinct continuous functions from 2¢ to [A].
Let w e 29 satisfying f(w) # g(w) and Vw' <w. f(w') =g(w').
Either f(w) ~g(w)[A] and therefore f ~ g[ 4]

or f(w) ~ g(w)[A*] and therefore f ~ g[ J(A')]

Hence when f + g either f ~g[4A] or f ~g[J(A4)].

So AL = (44)-.



35. Linear iso 94 o—o (A< 94)

C = {(h, (ho,hn)) |Yw € 22 h(Ow) = ho(w) and h(1w) = hy (w)}

defines a linear isomorphism between J4 and A < JA.

bijection between the webs, i.e. between
pairs of continuous functions from 29 to [A]

continuous functions from 2¢ to |A|.



36. Linear iso 44 o—o (A< 94)

Given (h, (ho,h)) and (g, (go,g1)), both in C we have to prove
that:

(1):h~g[JA] < (ho,h1) ~ (go,g1)[JA< J4]:(2)




37. Lineariso 44 o—o (A< 94)

(1) = (2) We assume that » ~ g[ 4],

i.e. that 3w e 2? h(w) ~ g(w) and Vv<w  h(v) =g(v).
Either w=0w' or w=1w".

In both cases (ho,h1) ~ (go,g1)[ A< 4]

0. If w=0w' we have hy ~ go[ A]:

* ho(w') ~ go(w') since ho(w') = h(0wW') = h(w), g(w) =
g(0w') =go(w') and a(w) ~ g(w).

* ho(v') =go(v") for allv'<w'; indeed, 0v' < Ow’ =w hence
ho(v') = h(0v') = g(0v') = go(v').



38. Lineariso 44 o—o (A< 94)

(1) = (2) We assume that 1 ~ g[ 4],

i.e. that 3w e 2? h(w) ~ g(w) and Vv<w  h(v) =g(v).

1. If w=1w' then iy f\gl[ﬂA] and hg = go:

* i ~gi[9A]
— hi(w') ~g1(w') since hy(w") =h(1w") =h(w), g1 (W) =
g(1w') = g(w), h(w) ~g(w).
- i (v')=g1(v') forallv'<w'; indeed, hy (V') =h(1V') =
g(1v) =g (V') since Iv'<Iw' =w.
* ho = go since hy(u) = h(0u) = g(Ou) = go(u) because
Ou < Iw' =w.



39. Lineariso 44 o—o (A< 94)

(2) = (1) We assume that (ho,h1) ~ (g0,g1)[JA < JA] i.e.
that either 0. Ay f\go[ﬂA] or1. (h() =g0 and iy f\gl[ﬂA]).

We first show i ~ g[ 4A] in case 0.

0. If hy ~ go[JA] then there exists w’ such that hg(w') ~
go(w") and hy(v') = go(v') for all v'<w’ and h ~ g[ 4A]. In-
deed:

* h(Ow') ~ g(Ow") because h(Ow') = ho(w'), g(Ow') =
go(w") and ho(w') ~ go(w').

« for all u < 0w/, one has h(u) = g(u); indeed, if u<
Ow’ then u = 0u’ with u’ <w', so h(u) =h(0u’) = ho(u'),
g(u)=g(0u") =go(u") and hy(u") = go(u’) because u’ <
w'.




40. Lineariso A o——o (JA< 9A)

(2) = (1) We assume that (ho,h1) ~ (g0,g1)[JA < JA] i.e.
that either 0. A /\go[ﬂA] or1. (ho =g0 and iy f\gl[ﬂA]).

We now show that & ~ g[{A] in case 1.

1. If hy ~ g1[JA] and hg = go then there exists w’ such that
h(w') ~gi(w') and hy(v') = g1 (v') for all v/ <w’, and for
all u, ho(u) = go(u). We have h ~ g[ 4A]:

* h(1w') ~g(1w")[A]; indeed h(1w") =h;(w') and g(1w') =
g1(w') and g1 (w') ~ hy(w').
« forallv< 1w’ one has h(v) =g(v) since v=0uorv=1u’
and
— if v=0uthen h(v) = h(0u) = ho(u) = go(u) = g(Ou) =
g(v).
— if v=1u' then u’ <w' and therefore h(v) = h(1u’) =
hy(u"), hi(u')=gi(u") (because u’<w'), and g(v) =
g(lu') = g1 (u').



41. Explanation

This is because, so to speak, fis fo< fi.

linitially defined the web of A as <;.pA (Q copies of |A|, a to-
ken was a function from Q to A) and Achim young suggested
to use 2% to get a finite representation of the tokens.




42. As aretract of Flag A

Let p = {a,a)|a € |A|} where a is the constant continuous
function from 2% to |A| mapping every infinite word to o € |A|.

p islinear. It dual o = {(a,a)|a € |A|} is linear as well.

pooisldy,

while oop ¢ 1d<, (identity, butonly for constant functions).



43. Flag is functorial

Given ¢:A - B defines 4¢: A - B by the linear map:

10={(f.8)/Vwe2°(f(w),g(w)) e}

This makes 9 an endo-functor of COH with linear maps.

This is not difficult but a bit tedious to prove.



44. Concluding question: syntax?

Pomset logic is better defined with (handsome) proof nets,
or as a rewriting system like Deep Inference.

The design of a self dual modality should perhaps proceed
with handsome proof nets

whose correction is equivalent to their interpretability in co-
herence spaces.

However modalities are complicated in the the proof net frame-
work

an exception being the essential nets of Lamarche for intu-
itionistic logic.

Guglielmi proposed in the last years several versions of a
self dual modality with deep inference coherence semantics
should be a guideline to find the right one, if any.
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