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USUAL QUANTIFICATION  
Some, a, there is,… 

All, each, any, every,…  
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ARISTOTLE,  
& SCHOLASTICS (AVICENNA, SCOTT, OCKHAM)  

 A and B are terms 
(« term » is vague: middle-age  distinction 
bewteen terms, « suppositionnes », eg. Ockham) 
1.  All A are B 
2.  Some A are B  
3.  No A are B 
4.  Not all A are B 
  Rules, syllogisms  

  Remarks: 
  Little about models or truth condition  
  Always a restriction, sorts, kinds,  

   « not all » is not lexicalized and some A are not B has 
a different focus.  
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FREGE AND ANALYTIC PHILOSOPHY 

 After the algebraic computational approach of  
Leibniz, Boole, De Morgan, Pierce,… 

 Predicate calculus, first order logic 
for instance distinction between  
 ∀x (A(x) → (B(x) ∨ C(x))  
 ∀x (A(x) → B(x)) ∨ ∀x (A(x) → C(x)) 

 Attempt of a deductive system  
 A single universe where variables vary: 

  All A are B 
  ∀x(A(x)→B(x)) 
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THE ADEQUATION  
BETWEEN PROOFS AND MODELS 

  Deduction, proofs (Hilbert) 
using a generic element 

  Models, truth condition (Tarski) 
  Adequation proofs-models: 

completeness theorem (Gödel, Herbrand, ~1930) 
  Whatever is provable is true in any model. 
  What is true in every model is provable.  

  This results holds 
  For classical logic 

Extensions are possible (intuitionistic, modal,…) 
  For first order logic 

No satisfying extension.  
  For usual quantification 

No proper deductive system for generalized quantifiers 6 



HOW DOES ONE ASSERT , USE OR REFUTE  
USUAL QUANTIFIED SENTENCES 

  In classical logic, reductio ad absurdum, tertium 
no datur,   can be used.  

 Otherwise:  
  « Exists » introduction rule  

  (how to prove ∃ as a conclusion) :  
  if for some object a P(a) is proved,  

then we may infer ∃x P(x)  

  « Exists » elimination rule  
  (how to use ∃ as an assumption):  
  if we know that ∃xP(x),  

and that C holds under the assumption P(a)  
with an a which is never present elsewhere, 
we may infer C without the assumption P(a). 
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HOW DOES ONE ASSERT , USE OR REFUTE  
USUAL QUANTIFIED SENTENCES 

  « For all » introduction rule  
  (how to prove ∀ as a conclusion)  
 To establish ∀xP(x), one has to show P(a) for an object 

a without any particular property, i.e. a generic object 
a.   

 If the domain is known, one can conclude ∀xP(x) from 
a proof of P(a) for each object a of the domain. The 
domain has to be finite to keep proofs finite. The 
Omega rule of Gentzen is an exception.  

  « For all » elimination rule  
  (how to use ∀ as an assumption)  
 From ∀xP(x), one can conclude P(a) for any object a.  
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REFUTATIONS 

  How do we refute usual quantification?  
  ∃xP(x): little can be done apart from proving that all 

do not have the property.  
  ∀xP(x):  Any dog may bite.  

this can be refuted in at least two ways:  
  Displaying an object not satisfying P 

Rex would never bite.  
  Asserting that a subset does not satisfy P, 

thus remainig with generic elements:  
Basset hounds do not bite.  

  This is related to the Avicennian idea that a property 
of a term (individual or not) is always asserted for the 
term as part of a class:  
it is more related to type theory than to the Fregean 
view of a single universe.  
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USUAL QUANTIFICATION  
IN ORDINARY LANGUAGE  
EXISTENTIALS 

 Existential are highly common 
Discourse is often structured according to 
existentials as in Discourse Representation 
Theory. 

 They can be with or without restriction, but in 
the later case the restiction is implicit: human 
beings, things, …  
  There's a tramp sittin' on my doorstep 
  Some girls give me money 
  Something happened to me yesterday 

 Focus:  
  Some politicians are crooks. (youtube) 
  ? Some crooks are politicians.  10 



USUAL QUANTIFICATION  
IN ORDINARY LANGUAGE  
UNIVERSALS 

 Less common but present. 
 With or without restriction: 

  Everyone, everything, anyone, anything,…   
  Every, all, each,…  

 Generic (proofs), distributive (models) 
  Whoever, every,  
  All, each,  

 Sometimes ranges over potentially infinite sets:  
  Each star in the sky is an enormous glowing ball of gas.  
  All groups of stars are held together by gravitational forces.  
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USUAL QUANTIFICATION  
IN ORDINARY LANGUAGE  
UNIVERSAL NEGATIVE 

 With or without restriction: 
  No one, nothing, not any, …  
  No,… 

 Generic or distributive:  
  Because no planet's orbit is perfectly circular, the 

distance of each varies over the course of its year. 
  Nothing's gonna change my world.  
  Porterfield went where no colleague had gone 

previously this season, realising three figures.  

12 



USUAL QUANTIFICATION  
IN ORDINARY LANGUAGE  
EXISTENTIAL NEGATIVE 

 Not lexicalised (in every human language?): 
  Not all, not every + NEG 
  Alternative formulation (different focus): 

some … are not … / some … do not … 

 Harder to grasp (psycholinguistic tests),  
frequent misunderstandings  

 Rather generic reading:  
  Not Every Picture Tells a Story 
  Everyone is entitled to an opinion, but not every 

opinion is entitled to student government funding. 

 Alternative formulation (different focus):  
  Some Students Do Not Participate In Group 

Experiments Or Projects. 13 



INDIVIDUAL CONCEPTS 
Alternative view of individuals and quantification 14 



MOTIVATION  
FOR INDIVIDUAL CONCEPTS 

 Usual semantics with possible worlds: 
It is impossible to believe that  

 Tullius≠Cicero 
with rigid designator 

 To comme back to the notion of TERM 
  Individuals are particular cases of predicates. 

 Quantification is a property of predicates.  
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FIRST ORDER IN SECOND ORDER: PROOFS 

 P is an individual concept whenever IC(P):  
  ∀x ∀ y(P(x) ∧P(y) →x=y) 
  Exists x P(x) 

 First order quantification  
from second order quantification:  
  Forall P IC(P) implies X(P) 
  Exists P IC(P) and X(P) 

 As far as proofs are concerned, this is equivalent 
to first order quantification – and when non 
emptyness is skipped one only as implication 
with first order quantification.  (Lacroix & 
Ciardelli) 16 



MODELS? 

 Natural (aka principal models): no completeness 
 Henkin models: 

 completeness and compactness  
but unnatural,  
e.g. one satisfies all the following formulae:  
  F0:  every injective map is a bijection  

(Dedekind finite) 
  Fn, n≥1:  there are at least n elements 
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GENERALIZED QUANTIFIERS 
Quite common in natural language 

Central topic in analytic philosophy (models) 

Proofs and refutations?  
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DEFINITION 

  Generalized quantifiers are operators that gives a 
proposition from two properties (two unary 
predicates):  
  A restriction 
  A predicate 

  Some are definable from usual first order logic:  
  At most two, 
  Exactly three 

  And some are not (from compactness):  
  The majority of… 
  Few /a few …  
  Most of… (strong majority + vague)  

  Observe that Frege’s reduction cannot apply: 
  Most students go out on Thursday evening. 
  For most people, if they are student then they go out on 

Thursday evening 
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MODELS / PROOFS 

  There are many studies about the models, 
the properties of such quantifiers, 
in particular monotony w.r.t. the restriction or the 
predicate.  

  Some assertion about cardinality are wrong:  
  Most numbers are not prime. 

Can be found in maths textbooks.  
  Test on “average” people:  

  most number are prime (no)  
  most number are not prime (yes) 

  No cardinality but measure, and what would be the 
corresponding generic element? An object enjoying  most of 
the properties?  

  Little is known about the proofs 
(tableaux methods without specific rules, but taking 
the intended model into account).  20 



« MOST OF », « THE MAJORITY OF » 
REMARKS 

 Most of is distinct from the majority of:  
  The majority of French people voted  

  for Chirac in 2002 (82%).  
  for Sarkozy in 2007 (53%).   

  Most of French people voted  
  for Chirac in 2002. (82%) 
  * for Sarkozy in 2007. (53%) 

 The percentage for « most of » to hold is contextual.    
 Most of is a vague quantifier.  
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« THE MAJORITY OF » ATTEMPT  
(PROOF VS. REFUTATION) 

 Two ways of refuting  
the majority of (meaning at least 50%) the A have 
the property P: 
  Only the minority of the A has the property P 
  There is another property Q  

which hold for the majority of the A 
with no A satisfying P and Q.  

  What would be a generic majority element?  
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DEFINE JOINTLY RULES FOR:  
1) THE MAJORITY OF  
2) A MINORITY OF  

  « For all » entails the « majority of »  
  If any property Q which  is true  of the majority 

of Ameets P, then P holds for the majority of the 
A (impredicative definition, needs  further study) 

 A minority of A is NOT P 
should be equivalent to  
The majority of A is P 

 The majority of does not entail a minority of  
 Forall => majority of  
 Only a minority => Exists  
 A linguistic remark why do we say « The 

majority » but « A minority »  23 



WHAT IS A QUANTIFIER? 
Proof-theretical analysis: 

Tools to allow the communication (cut) between 
proofs 
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COMMUNICATION (INTERACTION) 
BETWEEN PROOFS: CUT RULE 

 Cut-rule: two proofs π and ρ may communicate 
(interact) by means of a formula A, i.e. when  
  π ends with a formula A and other formulas Γ 
  ρ ends with the negation  ∼A of A and other formulas 
Λ 

 The communication (interaction) between such a 
pair of proofs produces a proof which ends with 
the formulas Γ and the formulas Λ 

 Cut-elimination procedure: is the development of 
such a communication (interaction) 

  Interaction: ∼A  is the negation of A, and A is the 
negation of ∼A . 25 



PARTICULAR CASE (INTUITIONISTIC 
COMMUNICATION) 

 Cut: communication between a proof π  of the 
conclusion A from the assumptions Γ (i.e. a proof 
which ends with A and the negation of the 
formulas Γ) and a proof ρ  of a conclusion C 
from the assumption A and the assumptions Λ 
(i.e. a proof which ends with C, the negation of A 
and the negation of Λ) 

 The communication between such a pair of proofs 
produces a proof of the conclusion C from the 
assumptions Γ and the assumptions Λ (i.e. a 
proof which ends with C, the negation of the 
formulas Γ and the negation of the formulas Λ). 26 



A SPECIAL CASE OF COMMUNICATION, 
LEADING TO QUANTIFIERS. 

 A proof π  which ends with a formula A(b) and 
formulas Γ 

 A proof ρ which ends with a formula ∼A(d) and 
formulas Λ 

 These proofs may communicate (cut) when one of 
these cases hold: 
  The object b is the same as the object d (indeed, 

replace b by d in A(b), or replace d by b in ∼A(d) ) 
  The object b is generic in π  (i.e. it does not occur in 

the formulas Γ) (indeed, replace b by d in A(b) 
  The object d is generic in ρ (i.e. it does not occur in 

the formulas Λ)  (indeed, replace d by b in ∼A(d) ) 27 



GENERIC OBJECTS :  
HILBERT’S APPROACH, 1 

 Name of generic objects (no quantifier)  
Rules for these names 

 Express the fact that b is a generic object in the 
formula A(b) (in a proof π ), in one of these two 
ways   
  b is an object such that, if b has the property A then 

every object has the property A 
τx A(x) 

  b is an object such that, if some object has not the 
property A, then b has not the property A 

εx ∼A(x) 
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GENERIC OBJECTS :  
HILBERT’S APPROACH, 2 

 Rules for τx: 
  From A(b) with b generic in a proof π, infer A(τxA(x)) 
  From ∼A(d) , infer ∼A(τxA(x))  
  So, one reduces to general case of cut rule 
  The development of cut rule is: replace τxA(x) by d 

 Rules for εx: 
  From A(b) with b generic in a proof π, infer A(εx∼A(x)) 
  From ∼A(d) , infer ∼ A(εx∼A(x)) 
  So, one reduces to general case of cut rule 
  The development of cut rule is: replace εx∼A(x) by d 

 … 

29 



GENERIC OBJECTS:  
FREGE’S APPROACH 

 Forget generic objects by means of operators ∀,∃ 
Rules of operators ∀,∃ 

 New formulas: ∀xA(x), ∃xA(x), with  
∼∀xA(x) = ∃x∼A(x) 

 Rules of operators ∀,∃ : 
  Rule of ∀ :  

from A(b) with b generic object, infer ∀xA(x) 
  Rule of ∃ : from ∼A(d), infer ∃x∼A(x) 
  So, reduces to the general case of cut rule 
  The development of cut rule will be replace the 

generic object b by d.  
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THE APPROACHES ARE EQUIVALENT.  
ONLY 2 QUANTIFIERS? 

 The following equivalences hold: 
  ∀xA(x)↔A(τxA(x))  
  ∀xA(x)↔A(εx∼A(x)) 
  “Universal quantification” 

 The following equivalence hold:  
  ∃xA(x)↔A(εxA(x))  
  ∃xA(x)↔A(τx∼A(x)) 
  “Existential quantification” 
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THE TWO DEFINITIONS ARE NOT EQUIVALENT 
FOR GENERALIZED QUANTIFIERS 

 Observe that the Fregean definition of 
quantifiers with a single universe is not possible 
with generalized quantifiers:  
  Most student go out on Thursday nights.  
  For most people if they are students then they go out 

on Thursday nights.  

 But still we can ask  whether it is possible to 
introduce other quantifiers, in this proof-
theoretical way.  
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NEW QUANTIFIERS, FROM A PROOF-
THEORETICAL POINT OF VIEW 

  A way inspired by Non Commutative Linear Logic where 
new (multiplicative and non commutative) connectives are 
added to the usual ones 

  Introduce a pair of quantifiers,  
a variant ∀* of ∀, and a variant ∃* of ∃. 

  Decide one of the following two possibilities: 
  ∀*xA(x) implies ∀xA(x) and so ∃xA(x) implies ∃*xA(x) 
  ∃*xA(x) implies ∃xA(x) and so ∀xA(x) implies ∀*xA(x) 
  (the second one is more natural…)  

  In both the cases, one of new quantifiers is obtained by 
adding a new rule, the other one is obtained by restricting 
the rule. 

  …  
  May we define in this way the quantifier  

“the majority of x” or “most x have the property A” … 
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CONCLUSION 
Of this preliminary work 34 



RULES FOR  
(GENERALIZED) QUANTIFIERS 

 Which properties of quantifier rules guarantee that 
they behave properly in proofs and interaction?  

  Is it possible to define a proof system for some 
generalized quantifiers?  
  Percentage?  
  Vague quantifiers?  
  … 

 What are the corresponding notions of generic 
elements?  
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PREDICATION,SORTS AND QUANTIFICATION  

 How do we take into account the sorts,what 
linguist call  the restriction of the quantifier  
(in a typed system, a kind of ontology)? 

 To avoid a paradox of the Fregean single sort:  
  Garance is not tall (as a person, for opening the 

fridge).  
  Garance is tall (for a two year old girl).  

 One quantifier per type or a general quantifier 
which specializes?  
On type theory it would be a constant of the 
system F: ForAll/Exists: Π X ((X t) t) 
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THANKS 
Any question?  37 


