
!

Logic and topology

some connections, old and new

David Fernández-Duque Christian Retoré
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A A list of connections from the early days
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Topological models for various logic:

• Opens as interpretations of proposi-
tional intuitionistic logic. — or modal
logic.

•Models of first order intuitionis-
tic logic as (pre)sheaves of classi-
cal models.

Categorical interpretation of intuitionistic proofs:

• Proofs as ”Scott continuous” maps between ob-
ject/structured sets/ types —– e.g. coherence
spaces taht work for second order as well.

• Intuitionnistic types theory and its homotopic
model.
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Topological methods in logic:

• Topological semantics for logic
with a provability modality.

• Completion of theories endowed with a topology
as a dynamical system. T 7→ T + Co(T ).

Logical methods for topology:

• Logics for topological and spatial description.
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A.1. Our selection

• Opens as interpretations of propositional intuition-
istic logic.

• Models of first order intuitionistic logic as
(pre)sheaves of classical models.

• Topological semantics for logic with a provability
modality.

Some other choices are possible... ma al bar con uno bicchiere di Ramandolo.
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B Interpretations of (intuitionistic)
propositions by open sets
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B.1. Intuitionistic propositional calculus

0-ary connective / constant: ⊥.

Binary connectives: ∧,∨,→
— beware that they are all independent.

¬P is defined as P →⊥.
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B.2. Intuitionistic natural deduction

Deduction rules as expected, but a single conclusion!
(so no contraction, no weakening on the conclusion
side!)
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B.3. Form formulas to open sets

Given a topology T on X define JpK ∈ T for any
propositional variable p.
This extends to any propositional formula:
J⊥K = ∅
Jp ∧ qK = JpK ∩ JqK
Jp ∨ qK = JpK ∪ JqK
Jp→ qK =

⋃
(x∩JpK)⊂JqK x

A formula F (resp. F ` G ) is said to be true in some
model whenever JF K = X the whole topological space
itself (resp. whenever JF K ⊂ JG K).
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B.4. Soundness and completeness

Soundness by induction on the (e.g. natural) deduction
rules.
Completeness from the topological space induced by
trees of classical models.
Standard R (or Rn) models are enough to obtain com-
pleteness. This can be proved by defining a continuous
map from Rn to any finite tree.
J¬PK simply is the interior of X \ JPK.
Example ¬¬P ` P is not provable:
define JPK =]0; 1[∪]1; 2[. Then J¬¬PK =]0; 2[
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B.5. Comments

Oldest connection between logic and topology?
Propositions up to equivalence: Heyting algebra lattice
with a → relation satisfying some relation the order.
In a complete Heyting algebra (any subset as a sup)→
can be defined as we did.
Opens of a topological space ordered with inclusion are
a complete Heyting algebra.
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C (Pre)sheaves and intuitionistic predicate
calculus
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C.1. Deduction rules

Intuitionistic existential statements are stronger:
¬∀x¬P(x) 6` ∃xP(x)
(rules as classical rules, limited by structural rules).
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C.2. (Pre)sheaves

Idea: continuous variation of an algebraic structure.
Topology or Grothendieck topology T .
Pre sheaf: u ∈ T 7→ Mu is a contravariant function
from the topology with inclusion morphisms to the cat-
egory of structures: when v ⊂ u there is a morphism
ρu,v : Mu → Mv (functoriality: ρu3,u2 ◦ ρu1,u2 = ρu1,u3

whenever is makes sense, i.e. u3 ⊂ u2 ⊂ u1).

Example of pre-sheafs on the topological space R :
B : u 7→ B(u,R) the ring of bounded functions from
u to R .
C : u 7→ Cu the ring of bounded functions from u to
R .
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C.3. Sheaves

The presheaf is said to be a sheaf if every family of
compatible elements has unique glueing:

given a cover Ui of an open set U ,

with for every i an element ci ∈ Mui such that
for every pair i , j ρui ,uj(ci) = ρuj ,ui(cj) there
is a unique c in Mu such that ci = ρu,ui(c).

Example of sheaf on the topological space R :
u 7→ C (u,R) the ring of continuous functions from u
to R .
Presheaf, but not a sheaf u 7→ B(u,R) the ring of
bounded functions from u to R .
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C.4. Sheaf of L-structures

Classical model of ”group” : a group.
Intuitionistic model of ”group” : a sheaf of groups.
Additional property: For any n−ary relation symbol R ,
for any tuple (a1, ... , an) from Mu

if for a cover ui of u such that (ai1, ... , ain) ∈ Rui for all
i ∈ I then (a1, ... , an) ∈ Ru.
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C.5. Presheaf semantics: Kripke-Joyal forc-
ing — 1/3 atoms and conjunction

Formulas of L can be inductively interpreted on an ob-
ject u of a given presheaf model M (ν: assignment into
Mu):

• u ν R(t1, ... , tn) iff ([t1]ν, ... , [tn]ν) ∈ Ru.

• u ν t1 = t2 iff [t1]ν = [t2]ν.

• u ν ⊥ iff u � ∅ (M∅  ⊥)

• u ν φ ∧ ψ iff u ν φ and u ν ψ.
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C.6. Presheaf semantics: Kripke-Joyal forc-
ing — 2/3 disjunction and existential

Formulas of L can be inductively interpreted on an ob-
ject u of a given presheaf model M (ν: assignment into
Mu):

• u ν φ ∨ ψ iff there is a covering ui of u such that
for any i ∈ I we have ui ν φ or ui ν ψ.

• u ν ∃xφ iff iff there is a covering ui of u and
elements ai ∈ |Mui | for i ∈ I such that ui ν[x 7→ai ] φ
for any index i .
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C.7. Presheaf semantics: Kripke-Joyal forc-
ing — 3/3 implication and universal

Formulas of L can be inductively interpreted on an ob-
ject u of a given presheaf model M (ν: assignment into
Mu):

• u  φ → ψ iff for all f : v → u, if v  φ then
v  ψ.

• u  ¬φ iff for all f : v → u, with v 6= ∅, v 6 φ.

• u ν ∀xφ iff for all f : v → u and all a ∈ Mv ,
v ν[x 7→a] φ.
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C.8. Properties of Kripke-Joyal forcing

Functoriality of :
if ui ⊂ uj and uj  F (t1, ... , tn) then ui  F (t i1, ... , t in)
where t jk is simply the restriction of tk to ui .
Locality of validity:
we asked for the validity of atoms to be local, but Krike-
Joyal forcing propagates this property to all formulae:
If there exist a covering ui of u and if for all i one has
ui  F (t i1, ... , t in) then u  F (t1, ... , tn)
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C.9. Soundness

Whenever ` F in IQC then any presheaf semantics
satisfies F .
Whenever Γ ` F in IQC then any presheaf semantics
that satisfies Γ satisfies F as well.
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C.10. Soundness and Completeness

IQC proves F iff X  >
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C.11. A remark on CR

]a, b[6 (` = 0 ∨ ¬(` = 0))
with `(x) = 0 for x ∈]a, (a + b)/2[,
and `(x) = x − (a + b)/2 for x ∈](a + b)/2, b[.
Indeed, otherwise there would exist u1, u2 with u1∪u2 =
]a, (a + b)/2[, such that `(x1) = 0 for all x1 in u1 and
`(x2) 6= 0 for all x2 in u2.
This is impossible because (a+b)/2 ought to be either
in u1 or in u2.
If (a+b)/2 is in u1 then ` should be constantly 0 around
(a + b)/2.
If (a + b)/2 is in u2 then ` should not be constantly 0
around (a + b)/2.
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C.12. Example

Let A[f ] = (f = 0 ∨ ¬(f = 0)) CR the sheaf of rings
of continuous functions from R to R validates both:
(1) ¬∀f A[f ]
(2) ∀f ¬¬A[f ] (provable)
Remark: ¬¬(p ∨ ¬p) is provable in IQC hence (2) is
provable and true in any particular sheaf model.
Let us see that ¬∀f A[f ] is true in CR
¬∀f A[f ] is true in CR according to Kripke Joyal forcing
means that for any u 6= ∅ u 6 ∀f A[f ] there exists v ⊂
u and f a continuous function on v such that v 6 A[f ].
Since u is a non empty open of R u contains v =]a, b[,
and f = ` defined above shows that ¬∀f A[f ] is true
in CR.
This shows that (1)→ ¬(2) is not true intuitionistic
logic (while ¬(2) and (1) are classically equivalent.
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D Topological models of logic with a
provability modality
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D.1. Gödel-Löb logic

2ϕ : T (including PA) proves ϕ.
3ϕ : ¬2¬ϕ
Language:

p ¬ϕ ϕ ∧ ψ 2ϕ

Axioms:

• 2(ϕ→ ψ)→ (2ϕ→ 2ψ)

• 2(2ϕ→ ϕ)→ 2ϕ (Löb’s axiom)

Second incompleteness theorem:

23> → 2⊥



!

D.2. Arithmetical interpretation

An arithmetical interpretation assigns a formula p∗ in
the language of arithmetic to each propositional vari-
able p.

• p 7→ p∗

• 2ϕ 7→ ∃x ProofPA(x , pϕ∗q)

Theorem 1 (Solovay). If GL ` ϕ if and only if, for
every arithmetical interpretation ∗, PA ` ϕ∗.
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D.3. Topological semantics:

• GL-spaces: scattered topological spaces 〈X , T 〉
Scattered: Every non-empty subset contains an iso-
lated point.

• Valuations: dA is the set of limit (or accumulation)
points of A.

[[3ϕ]] = d [[ϕ]]

GL is also sound and complete for this interpretation.
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D.4. Some scattered spaces

• A finite partial order 〈W ,<〉 with the downset
topology

• An ordinal ξ with the initial segment topology

• An ordinal ξ with the order topology

Non-scattered:

• The real line

• The rational numbers

• The Cantor set
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D.5. Ordinal numbers

Ordinals serve as canonical representatives of well-
orders.
Well-order: Structure 〈A,4〉 such that

• A is any set,

• 4 is a linear order on A, and

• if B ⊆ A is non-empty, then it has a 4-minimal
element.

The class Ord of ordinals is itself well-ordered:

ξ ≤ ζ ⇔ ξ ⊆ ζ.

Examples:

• Every interval [0, n) is an ordinal for n ∈ N.

• The set of natural numbers can itself be seen as the
first infinite ordinal, and is denoted ω.
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D.6. Ordinal topologies

Intervals on ordinals are defined in the usual way, e.g.

[α, β) = {ξ : α ≤ ξ < β}.

• Initial topologies: Topology I0 on an ordinal Θ gen-
erated by sets of the form [0,α).

• Interval topologies: Topology I1 on an ordinal Θ
generated by sets of the form [0,α) and (α, β).
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D.7. Iterated derived sets

Recall that if 〈X , T 〉 is any topological space and A ⊆
X , dA denotes the set of limit points of A.

If ξ is an ordinal, define d ξA recursively by:

1. d 0A = A

2. d ζ+1A = dd ζA

3. dλA =
⋂
ζ<λ d

ζA (λ a limit).

Theorem 2. The following are equivalent:

• 〈X , T 〉 is scattered
• there exists an ordinal Λ such that dΛX = ∅.
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D.8. Ranks on a scattered space

Let X = 〈X , T 〉 be a scattered space.

• Define ρ(x) to be the least ordinal such that x 6∈
d ρ(x)+1X .

• Define ρ(X) to be the least ordinal such that
d ρ(X)X = ∅.

Fact: The rank on 〈Θ, I0〉 is the identity.

Henceforth:

• ρ0 is the rank with respect to I0

• ρ1 is the rank with respect to I1.
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D.9. Completeness

Observation:

• The initial topology validates

3p ∧3q → 3(p ∧ q)∨3(p ∧3q)∨3(q ∧3p).

• Any space of rank n < ω validates 2n+1⊥.

• The first ordinal with infinite ρ1 is ωω.

Theorem 3 (Abashidze, Blass). If Θ ≥ ωω, then GL
is complete for 〈Θ, I1〉.
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Conclusion
It’s quite difficult to give an overview on the connection
between logic and topology in 15’.
We hope the talk will suggest some discussions during
the logic colloquium.
Some of those connections are quite active, and that’s
the most important.


