Mosaïque @ Arcachon Which formal languages for natural languages?

(revision of a talk for Huet 60th birthday)

Christian Retoré
LaBRI (CNRS et Université de Bordeaux)
INRIA Bordeaux Sud-Ouest

Survey with something new

- Formal syntax of natural language
- Natural language syntax with strings
- State of the art and discussion
- Tree languages for natural language
- The place of Ed Stabler's minimalist grammars in the hierarchy (very recent joint work with Gregory Kobele and Sylvain Salvati)

Back to the origins of computational linguistics

Which formal languages for natural language syntax? (first strings, then trees)

Two traditions

- Logic and grammar
 - o Denis from Thrax (Alexandria, Byzance)
 - o Scholastics
 - o Frege, Montague, Lambek
- 2. Grammar and computation
 - o Panini
 - o Chomsky, Schutzenberger
- Mixed (new in Computational Linguitics)Model theoretic syntax
 - 60's TCS: Buchi, Doner, Thatcher,...
 - o 90's CL: Mönnich, Rogers, Morawietz, Pullum,

. .

Two traditions

- 1. Logic and grammar
 - ++ connexion to semantics
 - + learning
 - - efficiency, complexity
- 2. Grammar and computation
 - ++ Complexity, (abstract) machines
 - Learning
 - - Connexion to semantics

Me: 1 visiting 2

Some ideas from generative grammar

- Language ≠ corpus
 He believes that (longuest sentence)
- Language: set of unconscious rules evidence: learning overgeneralisation.
 Against learning by imitation.
 - Why the child holded the baby rabbit
- Competence (rules) ≠ performance The wheat {that the rat [that the cat (that the dog chased) killed] ate} was poisonous.

Some ideas from generative grammar

- Universal grammar / parameters explaining the acquisition paradox
- Movement / comparison between sentences Which book that Chomsky wrote did he like? He likes three books that Chomsky wrote.
- Syntax/semantics
 quantifiers
 possible impossible coreferences
 (affirmative: he and Chomsky non coreferent)

Two principles from generative grammar

- Fast (polynomial?) analysis
 Grammaticality is decided quickly by speakers
- 2. Learnable under some conditions
 - Knowing argument structure and root meaning
 - With interaction
 - · With prosody
 - With positive examples only
 - Not that much positive examples
 - By iterated restrictions of the language

Two mixable kinds of finite descriptions of a class of well-formed expressions.

- Formal Grammar
 - CFGs, TAGs, HPSGs, CGs,
- Logic, finite model theory Model Theoretic Syntax
 - CFGs, TAGs, CGs, CxGs, GP,...

Two mixable kinds of finite descriptions of a class of well-formed expressions.

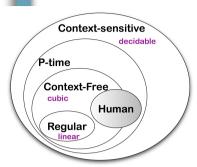
- Formal Grammar
 - Rules generating the potential infinity of sentences, structures
 - Computationally, Efficient,
 - Difficult to write and understand (especially if lexicalised)
- Logic, finite model theory Model Theoretic Syntax
 - The set of strings or terms satisfying a set of constraints -> degrees of grammaticality.
 - No natural underlying computational process.
 - Natural for linguistic descriptions, easy to write.

String Grammars

Usual Hypotheses and current State of the Art

Formal grammars

- T terminals, N non terminals
- Rules W -> W' (W: at least one N)



- W=W1 Z W2 and W'= W1 W" W2 context sensitive
- |W'|≥|W| length increasing
- |W|=1 context-free
- |W|=1 and W'=mZ regular

Which string languages?

- Center-embedded relatives
 Pierre (que Pierre)ⁿ connaîtⁿ dort.
 at least context-free.
- Dutch (Swiss-German) completives ...dat ik₁ Henk₂ haar₃ de nijlpaarden₃ zag₁ helpen₂ voeren₃ ... that I₁ see₁ Henk₂ help₂ her₃ to feed₃ the hippopotamuses

The current hypothesis on human string languages

Challenged from time to time:

Michaelis & Kracht 96 old Georgian is not semi-linear

Kobele 06 Yoruba involves unbounded copying

Mildly context sensitive languages

- First notion:
 - Tree Adjoing Grammars 1975 come back 1991
 - Combinatorial Categorial Grammars
- A larger one:
 - Multi-Component-TAG Weir
 - Minimalist grammars Stabler 1996
 - LCFRS Vijay-Shankar, Weir, Joshi Seki, Matsumura, Fujii, Kasimi
- Large classe = P-time Range Concatenation Grammars Boullier

Discussion: complexity

- Recursion limited to two (or say five)
 - Computer = finite state automaton??
 - Speakers (with extra processing time) accept nested sentences
 - Rules are stated like this by speakers, books, ...
 - Economy of the description

Discussion: word order

- Models of strict word orders, what about more free word order (e.g. with rich morphology, Latin, Russian, Sanskrit)
 - Standard answer: there is a canonical order from which other are derived and it induces semantic numbers
 - A hidden answer: it is much simpler to work with total orders then with partial orders!!

Discussion: acquisition

- Acquisition condition left out...
 but very important
 - for understanding human language faculty
 - for building large grammars from corpora.
- Exception: categorial grammars can be learnt:
 - lexicalized
 - structured types -> unification

Learnable languages in the Hierarchy

Discussion: local state of the art

- Richard Moot MMCG: extraction, parsing
 - NWO Dutch Spoken Corpus (spontaneous conversation, annotated transcript)

 • 1.002.098 word occurrences

 - 114.801 phrases (7,6 words per sentence)
 - 44.306 different word forms
 - Multi-Modal Categorial Grammar, acquired from the corpus (average 100 trees per word!)
 - Supertagging (n-most likely sequences of trees corresponding to the words in the sentence)
 - Results on test corpus 19.237 sentences 146.497 words (supertagging >> parsing):
 • 1 supertag 2'53" 40% correct (9 ms/sent., 1.18 ms/wd)

Discussion: local state of the art

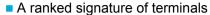
- Benoît Sagot, Eric de la Clergerie LFG parsing
 - Corpus EASy (Evaluation des Analyseurs Syntaxiques)
 Newspapers, web, mail, political speeches, literature,...

 87177 word occurrences

 - · 4322 sentences (20,2 words per sentence)
 - Handwritten LFG grammar
 - Selects one parse per sentence
 - Parsing time: total 152s, 35ms/sentence 1,7ms/word
 - · Correct chunks: 86%
 - Correct relations: 49%

Discussion:how to compare two different practical states of the art

- Mainly written
- Rather long sentences ~ 20 words
- Flat annotations
- Hand written grammar
- Lexical Functional Grammar
- Correctness measure: results on chunks
- Spoken
- Very short but tricky sentences <10 words
- Deeply annotated
- Automatically acquired grammar
- MultiModal Categorial Grammar
- Correctness results on whole parse structure


Tree grammars

- Strings are not enough:
 - For learning
 - For interpreting sentences
- Graphs (proof-nets of categorial grammars, dependency graphs) would be much welcomebut let's start with trees.

Tree grammars

(that I am just discovering, be indulgent)

Context-free tree grammars (Engelfriet after Fisher)

- A ranked signature of non-terminals
- Productions rules of the form

$$A(x_1,...,x_n) \rightarrow t(x_1,...,x_n)$$

- where A non terminal of arity n
- where t tree over terminals and non terminals with variables $x_1, ..., x_n$

Regular Tree Grammars Thatcher, Doner, 1967

- Rules only for non-terminals of rank 0 rewrite (ONLY LEAVES rewrite)
- These tree languages exactly are the ones definable in monadic second order logic
- Their yields are context free strings languages

Context Free Tree Grammars Fisher 1968, Engelfriet 1977

- OI (~ unrestricted) only the highest non terminal undergo rewriting.
 Strings: indexed languages
- IO only the lowest non terminals undergo rewriting.
 Strings: LCFRS (incomparable)
- Monadic (always a single NT)
 CFTG (IO=OI) ~ TAG derived trees
 Mönnich 1996

Context free Hyper Edge Replacement Grammars Courcelle 1987, Engelfriet

- Non terminal: hyper edges (ordered with possible repetitions)
- External vertices
- Replace an hyper edge with one with the same external vertices, possibly with new hyperedges linking them

Where are the tree languages that I like?

Categorial grammars Minimalist grammars

Categorial grammars

- Old notion: parse tree: any proof tree any bracketting is possible...
- Normal natural deduction only (Tiede)
- Non associative Lambek grammars
 - RTG Tiede (?), Kandulski
- ACG encoding Salvati Retoré
- Associative Lambek grammars
 - RTG are not enough (despite CFL only)
 - CFTG Salvati september 2007

- Close to categorial grammars or linear logic but much richer
- Implements Chomsky's minimalist program
- Lexicalised
- Two operations
 - Merge (binary)
 - Move (unary)

Minimalist grammars

- Trees with a head "<" or ">" on internal nodes, indicating where the head is.
- Complete trees: a single c on the head. only words on other leaves
- Sequences of features on the leafs
 - Selection

d n v

=d =n =v

 Movement +wh +k

-wh -k ...

Lexical items sequence of features associated with a word, possiby empty

Minimalist grammars

- Merge
 - a tree t with head =x w
 - Another tree t' with head xw'
- Result

suppress the x and =x yielding \underline{t} and \underline{t}' the selector si the head the selected is not

 $<(\underline{t};\underline{t'})$ if t is lexical (a leaf)

 $>(\underline{t'};\underline{t})$ if t is a real tree

Minimalist grammars

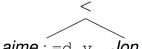
- Move
 - a tree t[t'] with head +f w and a subtree t' with head -f w
- Result

supress the +f and -f yielding t and t' the context is the head

 $>(\underline{t}';\underline{t}[\varepsilon])$

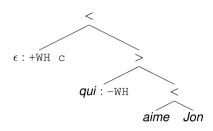
Minimalist grammars: lexicon

Jon: d

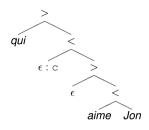

aime : = d = d v

qui:d -WH

 $\epsilon := v + WH c$


Minimalist grammars: merge

aime : = d = d v**Jon** : d



aime : =d v

Minimalist grammars: merge

Minimalist grammars: move

Shortest move condition SMC

- Chomsky: whenever two subtrees (-f) are competing for a movement triggered by (+f), the one closest to the attractor (+f) moves.
- Stabler: whenever two subtrees (-f) are competing for a movement triggered by (+f), the derivation crashes. Strong SMC!

Minimalist tree languages in the hierarchy

As the image by a transducer of a regular language

Two step description de Mönnich, Morawietz, Michaelis

- If minimalist tree languages are complicated, can we describe them as the image by a simple mechanism of a simple set of tree languages.
- MG->MCFG
- Lift -> RTG (derivation trees)
- Walking Tree Automaton computing dominance, precedence of the MG derived trees

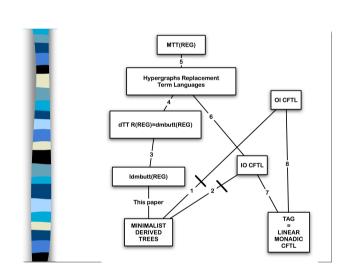
A simpler and lower description Kobele, Retoré, Salvati

- Derivation trees (regular set): lexical, move(_) merge (_,_) Tree tuples [main tree, (-f₁ subtree),, (-f_n subtree)] Strong SMC at most one subtree per f_i
- Eliminate the derivations that fail (still regular)
- Defined move and merge on tuples of trees
- Can be done with a Linear Deterministic Mult. Bottom-Up Tree Transducer

Merge with tuples of trees

$$(t_0[=xw],t_1,...,t_n)$$
 $(t'_0[xm],t'_1,...,t'_n)$

- Compute $<(\underline{t_0},\underline{t_0'})$ or $>(\underline{t_0'},\underline{t_0})$
- Put the trees in the tuple, and if there are two trees whose head starts with the same -f, the derivation crashes. (Strong Shortest Move Condition)


Move with tuples of trees

$$(t_0[+f_iw],t_1,..,t_i[-fm],...,t_n)$$

- Compute $> (t_i, t_0)$
- Put the trees in the tuple, and if there are two trees who's head starts with the same -f, the derivation crashes.
 (Strong Shortest Move Condition)

Interpreting this result

- Filtering the wrong derivation tree is linear (bottom up automaton)
- The computing of the derived tree ensures to be included into HR CFG (technical horrible reason: a top-down tree transducer with regular look-ahead and finite copying can do what a linear deterministic multi bottom up tree transducer does)

Conclusion

- Admittedly, little is know, but we're learning and starting to clear the picture.
- At least we know where stand a foramlisation of a/the main linguistic theory
- Improving the connexion between logical formalisms and rewrite formalisms
 - Syntax / Semantics correspondence
 - Parsing efficiency (kind of compilation)
- The need for two kinds of descriptions:
 - Model Theoretic Syntax: linguistic description
 - Derivational syntax: processing

Some references

- Edward Stabler A derivational approach to minimalism. LACL Springer 1996
- James Rogers A descriptive approach to language complexity CSLI 1998
- Frank Morawietz Two step approaches to natural language formalism Mouton de Gruyter 2003
- Greg Kobele, Christian Retoré, Sylvain Salvati: An automata -theoretic approach to minimalism in Model Theoretic Syntax at 10. 2007
- Christian Retoré Les mathématiques de la linguistique computationnelle. Premier volet: la théorie des langages. La gazette des mathématiciens, Société mathématique de France. January 2008