
Some pragmatic and semantic
applications of the system F

Christian Retoré

LaBRI-C.N.R.S. & Université de Bordeaux

with the help of M. Abrusci, R. Moot and many others

S.-J. Conrad, N. Asher, Z. Luo,

C. Beyssade, F. Corblin, A. Lecomte, D. Nicolas, C. Pollard, ...

1. A non-standard point of view

As opposed to main stream "formal semantics" in lin-
guistics this talk neither deal with truth nor with refer-
ence:

• too difficult (vagueness)

• other interpretations (i.e. interaction, proofs and
refutations) seem to be more adequate

We are simply thinking about the
logical syntax of human language semantics

which logical language would be a not-so-bad ap-
proximation of "meaning", and how do we compute
semantic representation in the language from sen-
tences or discourses.

2. Syntax of semantics, logical syntax

Montague’s view:
syntax −→ (logical form) −→ truth, reference in

possible worlds
our view:
syntax −→ logical form −→ interaction models,

proofs and refutations
(later on)

this talk

3. A necessary step before discourse and dia-
logue study

(1) You live in Marseilles?

(2) Yes, place Jean Jaurès.

(3) How did you come to CIRM?

(4) By bike.

(5) I did not know you like that much sports.
Any snow downtown?

To know what answers what, you need to know:

• who does what

• the lexical relations (sports / bike)

• some world knowledge (Luminy is over a hill) —
is it lexical or not?

Part I

The usual framework:
Montague semantics

4. An improper use of the name "Montague"

In what follows:

• no intentionality operators....

• no set theoretic semantics...

• no possible worlds...

which are usually associated with "Montague".

We only keep Montague’s work on "compositionality"
that is the computation of a logical formula from

• a syntactic analysis

• the lexicon — mapping words to partial formulae

5. Back to the roots: Montague semantics. Types.

Simply typed lambda terms

types ::= e | t | types → types

chair , sleep e→ t
likes transitive verb e→ (e→ t)

6. Back to the roots: Montague semantics. Syn-
tax/semantics.

(Syntactic type)∗ = Semantic type
S∗ = t a sentence is a proposi-

tion
np∗ = e a noun phrase is an entity
n∗ = e→ t a noun is a subset of the

set of entities
(A\B)∗ = (B /A)∗ = A→ B extends easily to all syn-

tactic categories of a Cat-
egorial Grammar e.g. a
Lambek CG

7. Back to the roots: Montague semantics.
Logic within lambda-calculus 1/2.

Logical operations (and, or, some, all the,.....) need
constants:

Constant Type
∃ (e→ t)→ t
∀ (e→ t)→ t
∧ t→ (t→ t)
∨ t→ (t→ t)
⊃ t→ (t→ t)

8. Back to the roots: Montague semantics.
Logic within lambda-calculus 2/2.

Words in the lexicon need constants for their denota-
tion:

likes λxλy (likes y) x x : e, y : e, likes : e→ (e→ t)
« likes » is a two-place predicate

Garance λP (P Garance) P : e→ t, Garance : e

« Garance » is viewed as
the properties that « Garance » holds

9. Back to the roots: Montague semantics.
Computing the semantics. 1/5

1. Replace in the lambda-term issued from the syn-
tax the words by the corresponding term of the
lexicon.

2. Reduce the resulting λ -term of type t its normal
form corresponds to a formula, the "meaning".

10. Back to the roots: Montague semantics.
Computing the semantics. 2/5

word semantic type u∗

semantics : λ -term of type u∗

xv the variable or constant x is of type v

some (e→ t)→ ((e→ t)→ t)
λPe→t λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(P x)(Q x))))

statements e→ t
λxe(statemente→t x)

speak_about e→ (e→ t)
λye λxe ((speak_aboute→(e→t) x)y)

themselves (e→ (e→ t))→ (e→ t)
λPe→(e→t) λxe ((P x)x)

11. Back to the roots: Montague semantics.
Computing the semantics. 3/5

The syntax (e.g. a Lambek categorial grammar) yields
a λ -term representing this deduction simply is

((some statements) (themsleves speak_about)) of type t

12. Back to the roots: Montague semantics.
Computing the semantics. 4/5((

λPe→t λQe→t (∃(e→t)→t (λxe(∧(P x)(Q x))))
)(

λxe(statemente→t x)
))((

λPe→(e→t) λxe ((P x)x)
)(

λye λxe ((speak_aboute→(e→t) x)y)
))

↓ β(
λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(statemente→t x)(Q x))))

)(
λxe ((speak_aboute→(e→t) x)x)

)
↓ β(

∃(e→t)→t (λxe(∧(statemente→t x)((speak_aboute→(e→t) x)x)))
)

13. Back to the roots: Montague semantics.
Computing the semantics. 5/5

This term represent the following formula of predi-
cate calculus (in a more pleasant format):

∃x : e (statement(x) ∧ speak_about(x ,x))

This is a (simplistic) semantic representation of the
analyzed sentence.

14. Two levels

Logic/calculus for meaning assembly (a.k.a glue logic,
metalogic,...) In the standard case: simply typed
lambda calculus with two base types.

Logic/language for semantic representations In the
standard case: higher-order predicate logic or
first-order logic.

This Churchian view (λ -terms as partial formulae) in-
troduced λ -calculus to handle substitution in Hilbert
style deduction.

For Curryhowardists (typed λ -terms as proofs) what
is the proof a formula viewed as a lambda term of
type t: it is a proof of its correctness, that’s all.

15. This is too simplistic:

Lexical semantics is out of reach:

• a common noun say "book" (syntax) maps to a
unary predicate "book:e→ t"

• a transitive verb like "read" maps to a binary pred-
icate "read:e→ e→ t"

• this will only give you the argument structure of
Mary reads a book. (∃x : ebook(x) and reads(Mary ,x))

• but it cannot relate book and read as any dictio-
nary does.

It says nothing about classical questions: plurals,
generalised quantifiers,...

only retain the computational view!

16. Refinements

Much more types in the calculus for meaning assem-
bly....
for filtering out illicit compositions: Their ten is incred-
ibly fast.

Complex terms in the lexicon (triggered by context)
for overpassing the aforementioned filter e.g. ten
may be a soccer player.

Thereafter, uniform operations on types like in sys-
tem F will be welcome.

17. Why types in the syntax of semantics

opposed to Frege’s single sort view:
∀x : A P(x)⇐⇒∀x . A(x)→ P(x)
(impossible for "the majority of", "most of" etc.)

in ancient and especially medieval philosophy (in par-
ticular Abu-l Barakāt al Baghdādı̄, Avicenna):
we assert properties of things as being member
of some class (= type?)

There are less types than logical formulae with a sin-
gle free variable, they are more constrained, and not
any formula defines a comparison class.

One should be cautious: the coexistence of types
and of usual formulae opens the gates of hell.

18. A personal view on the border
between semantics and pragmatics

• semantics is encoded by the terms:
they yield formulae by compositionality

• pragmatics is encoded in the types
they are flexible and determined by the context

19. Terms and types, semantics and pragmatics

A paradox of Frege’s view. For the very same Car-
lotta (two-year old) on can both have

(6) Carlotta is tall. (class: two-year old)

(7) Carlotta is not tall. (class: human beings)

Types should be used to model classes, sorts,... and
they are inferred from the context (pragmatic).
With such a view we go for types depending on the
context (not on other terms as in dependent types).
Terms (with standard typing) express the possible
composition for computing semantic representations.
The lexicon tells which transformations are possible
(meaning transfers, adaptation of the class).

Part II

Extending the type system

20. More general types and terms.
Many sorted logic. TYn

Extension to TYn without difficulty nor surprise:
e can be divided in several kind of entities.

It’s a kind of flat ontology:
objects, concepts, events,...
multisorted higher-order logic

... but this yields puzzling question: types there could
be predicates acting on larger types.

21. More general types and terms.
Second order types (Girard’s F).

One can also add type variables and quantification
over types.

• Constants e and t, as well as any type variable
α in P , are types.

• Whenever T is a type and α a type variable which
may but need not occur in T , Λα . T is a type.

• Whenever T1 and T2 are types, T1→ T2 is also
a type.

22. More general types and terms.
Second order terms (Girard’s F).

• A variable of type T i.e. x : T or xT is a term.
Countably many variables of each type.

• (f τ) is a term of type U whenever τ : T and f :
T → U .

• λxT. τ is a term of type T → U whenever x : T ,
and τ : U .

• τ{U} is a term of type T [U/α] whenever τ : Λα . T ,
and U is a type.

• Λα .τ is a term of type Λα .T whenever α is a type
variable, and τ : T without any free occurrence of
the type variable α.

23. More general types and terms.
Second order reduction.

The reduction is defined as follows:

• (Λα .τ){U} reduces to τ[U/α] (remember that α

and U are types).

• (λx .τ)u reduces to τ[u/x] (usual reduction).

Reduction is strongly normalising and confluent (Gi-
rard, 1971): every term of every type admits a unique
normal form which is reached no matter how one pro-
ceeds.

24. More general types and terms.
A second order example.

Given two predicates Pα→t and Qβ→t

over entities of respective kinds α and β

two morphisms f from ξ to α and g from ξ to β

we can coordinate entities of type ξ :
Λξ λxξ λ f ξ→aλgξ→b.

(and (P (f x))(Q (g x)))

Universal closure w.r.t. morphisms, properties, types:
ΛαΛβλPα→tλQβ→tΛξ λxξ λ f ξ→αλgξ→β .

(and (P (f x))(Q (g x)))
The functions are not really functions: (fx) should be
read as x of type ξ viewed as an α object.

Part III

Integrating facets
in a compositional lexicon

25. Principles of our lexicon

• Remain within realm of Montagovian composi-
tional semantics (but no models).

• Allow both predicate and argument to contribute
lexical information to the compound.

• Integrate within existing discourse models (λ -DRT).

We advocate a system based on optional modifiers.

26. The Types

• Montagovian composition:

– Predicate include the typing and the order of
its arguments.

• Generative Lexicon style concept hierarchy:

– Types are different for every distinct lexical
behavior

– A kind of ontology details the specialization
relations between types

Second-order typing, like Girard’s F system is needed
for arbitrary modifiers:

ΛαλxAyα f α→R .((readA→R→t x) (f y))

27. The Terms: main / standard term

• A standard λ -term attached to the main sense:

– Used for compositional purposes
– Comprising detailed typing information
– Including slots for optional modifiers
– e.g. Λαβλxαyβ f α→Agβ→F .((eatA→F→t (f x)) (g y))

– e.g. ParisT

28. The Terms: Optional Morphisms

– Each a one-place predicate
– Used, or not, for adaptation purposes
– Each associated with a constraint : rigid, ∅

∗

(
IdF→F

∅ ,
f
Living→F
grind

rigid

)
∗
(

IdT→T

∅ ,
f T→L
L
∅ ,

f T→P
P

∅ ,
f T→G
G
rigid

)

29. A Complete Lexical Entry

Every lexeme is associated to an n-uple such as:(
ParisT , λxT . xT

∅ ,
λxT .(f T→L

L x)
∅ ,

λxT .(f T→P
P x)
∅ ,

λxT .(f T→G
G x)

rigid

)

30. RIGID vs flexible use of optional morphisms

Type clash: (λxV . (PV→W x))τU

(λxV . (PV→W x)) (f U→V
τ

U)

f : optional term associated with either P or τ

f applies once to the argument and not to the sev-
eral occurrences of x in the function.
A conjunction yields
(λxV . (∧ (PV→W x) (QV→W x)) (f U→V τU),
the argument is uniformly transformed.
Second order is not needed, the type V of the argu-
ment is known and it is always the same for every
occurrence of x .

31. FLEXIBLEvs.rigid use of optionalmorphisms

(λx?. (· · ·(PA→X x?) · · ·(QB→Y x?) · · ·)τU :
type clash(es) [Montague: ? = A = B e.g. e]
(Λξ .λ f ξ→A.λgξ→B . (· · ·(PA→X (fxξ)) · · ·(QB→Y (gxξ)) · · ·))

{U} f U→A gU→B τU

f ,g : optional terms associated with either P or τ.
For each occurrence of x
with different A,B , ... with different f ,g , ... each time.

Second order typing:
1) anticipates the yet unknown type of the argument
2) factorizes the different function types in the slots.

The types {U} and the associated morphism f are
inferred from the original formula (λxV . (PV→W x))τU .

32. Standard behaviour

φ : physical objects

small stone

small︷ ︸︸ ︷
(λxϕ . (smallϕ→ϕx))

stone︷︸︸︷
τ

ϕ

(small τ)ϕ

33. Qualia exploitation

wondering, loving smile

wondering, loving︷ ︸︸ ︷
(λxP . (andt→(t→t) (wonderingP→t x) (lovingP→t x)))

smile︷︸︸︷
τ

S

(λxP . (andt→(t→t) (wonderingP→t x) (lovingP→t x))))(f S→P
a τS)

(and (loving (fa τ)) (loving (fa τ)))

34. Facets (dot-objects): incorrect copredication

Incorrect co-predication. The rigid constraint blocks
the copredication e.g. f Fs→Fd

g cannot be rigidly used
in

(8) ?? The tuna we had yesterday was lightning fast
and delicious.

(9) ?? Liverpool defeated MU and is and important
harbour.

35. Facets, correct co-predication.
Town example 1/3

T town L location P people
f T→P
p f T→L

l kT København

København is both a seaport and a cosmopolitan
capital.

36. Facets, correct co-predication.
Town example 2/3

Conjunction of cosplP→t , capT→t and portL→t , on kT

If T = P = L = e, (as in Montague)
(λxe(andt→(t→t)((andt→(t→t) (cospl x) (cap x)) (port x))) k .
Here is the λ -term for AND between three predicates
over different kinds Pα→t , Qβ→t , Rβ→t

ΛαΛβ Λγ

λPα→tλQβ→tλRγ→t

Λξ λxξ

λ f ξ→αλgξ→β λhξ→γ .
(and(and (P (f x))(Q (g x)))(R (h x)))

f , g and h convert x to different types.

37. Facets, correct co-predication.
Town example 3/3

AND applied to P and T and L and to cosplP→t and
capT→t and portL→t yields:

Λξ λxξ λ f ξ→αλgξ→β λhξ→γ .
(and(and (cosplP→t (fp x))(capT→t (ft x)))(portL→t (fl x)))

We now wish to apply this to the type T and to the
transformations provided by the lexicon. No type clash
with capT→t , hence idT→T works. For L and P we
use the transformations fp and fl .

(andt→(t→t)

(andt→(t→t)

(cospl(fp kT)P)t)(cap(id kT)T)t)t(port (fl kT)L)t)t

38. Fictive motion, virtual traveller

Corpus of travels in the Pyrenees (French, XVII-XX centuries)...

(10) nous descendons, pendant un quart d’heure, la vallée de
l’Esera. we descend, for a quarter of an hour, the Esera
valley.

(11) La lune, qui éclaire notre marche, nous fait découvrir sur
la droite un sentier qui serpente. The moon, which
lightens our steps, allows us to discover a winding path on
our right.

(12) Il nous conduit sur un petit plateau, au milieu de sapins,
au-dessus et à quelque distance du torrent de Ramun. It
leads us to a small plateau, surrounded by firs, at some
distance of and above the Ramun torrent.

“Il” (it) in sentence 12 refers to “un sentier qui serpente” im-
poses anaphora resolution before coercion → constraints on
the possible interpretations Background(10,11) and Narration(11,12).

39. More examples...

Rhetoric: important & hard to infer. Virtual? Wait for 16!

(13) Nous partimes pour Barèges à 8 heures du matin par une
fort jolie route qui nous conduisit à Lourdes.
We left (PS) for Barèges at 8 in the morning, taking a very
pretty road which led (PS) us to Lourdes.

(14) (...) qui va en se resserrant jusqu’à Pierrefite, où les
routes de Lux et de Cauterets séparent.
(...) which goes shrinking along the way, up to Pierrefite,
where the roads to Lux and to Cauterets split.

(15) Celle de Lux entre dans une gorge qui vous mène au
fond d’un précipice et traverse le gave de Pau.
The one to Lux enters a gorge which leads you to the
bottom of a precipice and traverses the Gave de Pau.

(16) (...) Après une longue marche, l’on arrive à Barèges à 6
heures du soir. After a long walk, we arrive in Barèges at
6 in the evening.

40. A simple example

To sum up, we often see examples like:

(17) The road goes up for two hours.

And sometimes, no one follows the path....they sim-
ply speak about it while passing by.
Here as well, a type conflict triggers some lexical re-
sources:(

Phu→t
(
upath

))
hu(man) 6= path

The lexicon as a dictionary tells us that this construct
is allowed and means someone following the path
moves upwards for two hours.

Without the duration,no need of a virtual traveller fol-
lowing the path: the "path" could be a parametrized
path whose third component increases.
Hence the upath produces a xhuman, and if u was an
argument of P but of type human:

1. The scope of the human could not encompass
P .

2. Properties or the path like tarred, would become
properties of the traveller (cf. Lucky Luke)

Hence transformation apple not to the type path but
to the type-raised version (path→ t)→ t and yields a
type-raised human (hu→ t)→ t which can have the
wider scope. Here t should be t→ v because we
have event variables.

p : path — picked up by a function finding an element
from a formula.

kind of coercion
h = λQ(path→v→t)→v→tλPhu→v→t

(Q (λcpathλev ∀(λvhu suivre(e,v ,c)⇒ ((P v) e))))

(h p) = ((λQ(path→v→t)→v→tλPhu→v→t

(Q (λcpathλev ∀(λvhu suivre(e,v ,c)⇒ ((P v) e)))))
(λPpath→v→tλev(P ppath e)))

=β λPhu→v→tλev ∀(λyhusuivre(e,y ,ppath)⇒ ((P x) e))

goes_up = λxhuλevup(e,x)
((h(the path))goes_up) =

((λPhu→v→tλev ∀(λyhusuivre(e,y ,ppath)⇒ ((P x) e)))
(λxhuλevup(e,x)))

=β λev∀(λyhusuivre(e,y ,ppath)⇒ up(e,y))

In practice we do not proceed like this in the im-
plementation. We use the representation of formu-
lae called λ -DRT: it better follows human language
structure and allows formulae to move to the top most
level (presuppositions).

41. Plurals

For plurals, one can define have maps from prop-
erties to internal integers, and operators are able to
switch from collective readings:

• The three of us moved the piano. (collective read-
ing is likely)

• The twelve students passed the exam. (each of
them)

• The committees met. (each committee met or
they all met)

42. Generalized quantifiers

Quite common in natural language, but very difficult
to model (vagueness).

Rather viewed as properties of properties than as
properties of individuals... of the predicates: "few"
"the majority of" "most of" ... as acting one one pred-
icate (as opposed to the standard, maps from pairs
of sets to truth values).

A generalised quantifier Q acts upon a property P of
α-objects and yield an α object satisfying P when-
ever Qx .P(x) holds (cf. Hilbert’s τ ,ε).

43. Carlotta is tall and and not tall

We handle this question by type coercion.
Types, not formulae: indeed you can not say Carlotta
is tall with respect to the set of girls born on a tues-
day, having a sky blue jumper, and whose mother is
called Sarah.

Then a coercion in the lexicon provides the right type
from her natural type(s) to a possible but undeclared
type:

from 2yearOld girls to Human beings, or to her school
class, but sometimes to a deictic set that has to be
provided by the context: the children playing in from
of me.

44. Interrogations, atrocities

I am quite worried by the "mixture" between logical
formulae and types. Given a type τ it is tempting to
have a predicate τ̄(x) corresponding to x : τ but
x : τ is a kind of presupposition while τ̄(x) is simply a
formulae has to be stipulated as "more true".

(18) The cat of my neighbour is sleeping on my car.

(19) This cat is my neighbour’s.

In the first example there is a presupposition that my
neighbour owns a cat. In the second, we could con-
sider that this cat is a cat also is a presupposition.
Should they be similarly modelled? When the λ -term
is complex?

45. System F for meaning assembly

• syntactic elegance

• the formulae obtained as semantic representa-
tion are the usual ones

• less types (constrained) than formulae with a free
variable (e.g. types∼ natural comparison classes).

• finite description (e.g. a single constant for the
quantifier ∀, which is specialized for any type and
property)

46. F and subtyping

Subtyping in functional programming is quite compli-
cated with system F despite some attempts by Cardelli
et al. (complicated restriction on types) Soloviev et
al. (too strong equations).

Subtyping : subtypes of a→ b are related to subtypes
of a and to subtypes of b.

Does this subtyping has something to do with classes
and subclasses as organised in the lexicon? NO

47. F and linguistic subtyping

Subtyping on verb types does not derive from sub-
typing of its arguments, subject, object, etc. Clas-
sifications of "food"and "eaters" does not provide a
classification of "eating" verbs (swallow, taste, appre-
ciate)?

Worse, our subtyping relations are idiosyncratic :

• not all ontological specialisations are lexically sound
OK: Mon vélo set crevé. Not OK: My bike is flat.

• the transitivity of linguistic subtyping is unclear

48. F vs. Type Theory

• F defined by 4 rules and 2 reduction patterns

• Algorithmic complexity is not an issue (syntax
performs parsing, semantics β -reduces the sim-
ple terms appearing in the lexicon)

• Martin-Löf TT (used by Z. Luo) many rules, many
variants

• Coherence: F more complex.

• dependent types may be useful but so far I was
not convinced that they are necessary.

49. Improvement with linear types

Instead of F we can use a linear version of F .

An object with two facets may have type A⊗B .

Access to facets are provided by the lexicon which
offers a morphism c when the language allows this
coercion — remember access is idiosyncratic.

Exponentials allow to internally encode the difference
between flexible and rigid transformation.
X ,X (Y 6` Y ⊗X
but with the intuitionistic logic / connectives
X ,X → Y ` Y &X

Ongoing work with Ivano Ciardelli (PhD Bordeaux —
Bologna).

50. Our type theoretical model at work

Part of the Grail platform by Richard Moot:

• categorial grammar automated extraction from an
annotated corpus

• parser using most likely trees

• semantic analysis in λ -DRT (convenient variant
for predicate calculus)

– basic when no semantic lexicon has been typed
– fully implemented on a small typed lexicon

Lexical transformations partly implemented by Emeric
Kien and Samira Kherfellah (internships for the tiny
lexicon that has been typed.

51. Conclusion

Confrontation of logic with real linguistic data triggers
difficult questions.

At least one of them, the interaction between

• the compositional calculus

• the logic for expressing "meaning"

The logical organisation of a lexicon, and the integra-
tion of lexical semantics into compositional seman-
tics and formulae is a difficult question as well.

It is a first step before the ludic analysis of dialogue
by A. Lecomte and M. Quatrini.

	A non-standard point of view
	Syntax of semantics, logical syntax
	A necessary step before discourse and dialogue study
	I The usual framework:Montague semantics
	An improper use of the name "Montague"
	Back to the roots: Montague semantics. Types.
	Back to the roots: Montague semantics. Syntax/semantics.
	Back to the roots: Montague semantics.Logic within lambda-calculus 1/2.
	Back to the roots: Montague semantics.Logic within lambda-calculus 2/2.
	Back to the roots: Montague semantics. Computing the semantics. 1/5
	Back to the roots: Montague semantics. Computing the semantics. 2/5
	Back to the roots: Montague semantics. Computing the semantics. 3/5
	Back to the roots: Montague semantics.Computing the semantics. 4/5
	Back to the roots: Montague semantics. Computing the semantics. 5/5
	Two levels
	This is too simplistic:
	Refinements
	Why types in the syntax of semantics
	A personal view on the border between semantics and pragmatics
	Terms and types, semantics and pragmatics

	II Extending the type system
	More general types and terms.Many sorted logic. TYn
	More general types and terms.Second order types (Girard's F).
	More general types and terms.Second order terms (Girard's F).
	More general types and terms.Second order reduction.
	More general types and terms.A second order example.

	III Integrating facetsin a compositional lexicon
	Principles of our lexicon
	The Types
	The Terms: main / standard term
	The Terms: Optional Morphisms
	A Complete Lexical Entry
	RIGID vs flexible use of optional morphisms
	FLEXIBLE vs. rigid use of optional morphisms
	Standard behaviour
	Qualia exploitation
	Facets (dot-objects): incorrect copredication
	Facets, correct co-predication.Town example 1/3
	Facets, correct co-predication.Town example 2/3
	Facets, correct co-predication.Town example 3/3
	Fictive motion, virtual traveller
	More examples...
	A simple example
	Plurals
	Generalized quantifiers
	Carlotta is tall and and not tall
	Interrogations, atrocities
	boeuf System F for meaning assembly
	boeuf F and subtyping
	boeuf F and linguistic subtyping
	boeuf F vs. Type Theory
	Improvement with linear types
	Our type theoretical model at work
	Conclusion

