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A Generics and universals



	
  

A.1. Ancient and medieval philosophical ideas

A long debated question in logic and metaphysics (from Plato,
Aristotle, Porphyre, scholastics...)

Universal ”dog” vs. the set of individuals ”dogs”

What is a concept of a dog?

a substance, that exists independently of the individuals falling un-
der this concept

a name without reality, i.e. an abbreviation a word for the class of
all individuals falling under the concept

a concept that is a mental construction related to the empirical
relation to the set of individuals

A good question (Abélard/Roscelin debate) :

If an illness causes the extinction of all tall dogs, would your con-
cept of dog be altered.



	
  

A.2. Ancient and new mathematics

Now let speak about proofs and reasoning on a collection of indi-
viduals:

∀x ∈ C F (x)≡&x∈C F (x)≡ P(c1)&P(c2)&P(c3)&P(c4)& · · ·

How can we prove and refute such a formula? TWO ways:

• We can prove P(c1) then P(c2) then P(c3) then P(c4)... Once
we did so for all elements in C we can perform the conjunction
of all these formulae.

• Let x be any element of C ...(reasoning) ... P(x) holds. As x
does not possess anything special apart from being in C , the
property holds for any element in C .

As far as the collection under consideration is finite no difference.



	
  

A.3. The dual nature of universal quantification

(1) a. Tout chien a quatre pattes.
b. Le chien a quatre pattes.
c. Les chiens ont quatre pattes.
d. Tous les chiens ont quatre pattes.
e. Chaque chien a quatre pattes.

(2) a. Each dog has four legs.
b. Dogs have four legs.
c. A dog has four legs.



	
  

A.4. Distributive readings and individuals

Collection of individuals: cannot accept exceptions, coincidence
of properties that can be conjuncted.

• Domain may be complicated:
”Every one sitting at the table with the uncle of the bride had
white shirts.”

• Proof by reasoning.

• Refutation: a sentence involving a distributive quantifier on
domain D can only be refuted by an individual and not by a
class unless it is clear that this class intersects the domain D.

(3) a. Each bird with both black and white feathers flies.
b. Not this wound bird.(perfect)
c. Not autruches. (not good refutation, since the in-

tersection is not obvious)



	
  

A.5. Generics NPs and sentences

Generic element: ideal, properties derived by reasoning, can ac-
cept exceptions.

• Domain cannot be complicated.
A person sitting at the table with the uncle of the bride had a
white shirt. (cannot mean all of them).

• Refutation:
The refutation of a sentence involving a generic can only be
refuted by another rule: Proof: a proof for each individual.

• (4) a. Birds fly.
b. Not this wound bird. (not a refutation, generic

readings admit exceptions)
c. Not autruches. (perfect)



	
  

A.6. Proof rules with generics — introduction

Usual rule when a property has been established for an x which
does not enjoy any particular property (i.e. is not free in any hy-
pothesis), one can conclude that the property holds for all individ-
uals:

no free occurrence of x
in any Hi

H1, ... ,Hn ` P(x) ∀i
H1, ... ,Hn ` ∀x . P(x)

Can be formulated with a generic element:

no free occurrence of x
in any Hi

H1, ... ,Hn ` P(x) ∀i
H1, ... ,Hn ` P(τxP(x))

τxP(x) enjoys the property P( ) when any individual does.



	
  

A.7. Proof rules with generics — elimination

The ∀ elimination rule says that when a property has been estab-
lished for all individuals it can be inferred for any particular terms
or individual:

H1, ... ,Hn ` ∀x . P(x)
∀e

H1, ... ,Hn ` P(a)

This can be formulated with a generic individual using τ a sub-
nector i.e. an operator that builds a term (of type individual) from
a formula (Curry’s terminology).

H1, ... ,Hn ` P(τxP(x)) ∀e
H1, ... ,Hn ` P(a)

If τxP(x) enjoys the property P( ) then any individual does.



	
  

B Hilbert’s epsilon



	
  

B.1. Russell’s iota

As opposed to the generic dog τxdog(x) there is ”This dog”, ”The
dog that is sleeping on the sofa,...” the unique individual satisfying
P : a term ιxP(x).
Russell introduced ι for definite descriptions. It is the ancestor of
Hilbert’s ε.
A technical problem with ι is that the negation of there exists a
unique individual such that P is that there are no such individual
or at least two.
As observed by von Heusinger, it should be observed that there
is little difference between the logical form of definite descriptions
and indefinite noun phrase...
The uniqueness is not always observed,

(5) Recueilli très jeune par les moines de l’abbaye de Re-
ichenau, sur l’ile du lac de Constance, en Allemagne,
qui le prennent en charge totalement; Hermann étudie et
devient l’un des savants les plus érudits du XIème siècle.



	
  

B.2. Hilbert’s epsilon

F (εxF )≡ ∃x . F (x)

A term (of type individual) εxF associated with F : as soon as an
entity enjoys F the term εxF enjoys F .

The operator ε binds the free occurrences of x in F .



	
  

B.3. Syntax of epsilon in first order logic

Terms and formulae are defined by mutual recursion:

• Any constant in L is a term.

• Any variable in L is a term.

• f (t1, ... , tp) is a term provided each ti is a term and f is a
function symbol of L of arity p

• εxA is a term if A is a formula and x a variable — any free
occurrence of x in A is bound by εx

• τxA is a term if A is a formula and x a variable — any free
occurrence of x in A is bound by τx

• s = t is a formula whenever s and t are terms.

• R(t1, ... , tn) is a formula provided each ti is a term and R is a
relation symbol of L of arity n

• A&B , A∨B , A⇒ B , ¬A when A and B are formulae.



	
  

B.4. Rules for ε

Hilbert’s work: fine! (Grundlagen der Mathematik, with P. Bernays)
Introduction of the universal quantifier
Rule 1: From P(x) with x generic infer:
P(τx .P(x))

Introduction of the existential quantifier:
Rule 2: From P(t) infer P(εxP(x))≡ ∃x P(x)

A classical (as opposed to intuitionistic) observation:

P(εxP(x))≡ ∃xP(x)≡ ¬∀x¬P ≡ ¬¬P(τx¬P(x))

P(τxP(x))≡ ∀xP(x)≡ ¬∃x¬P ≡ ¬¬P(εx¬P(x))

Hence: τxP(x) = ε¬P(x) and εxP(x) = τ¬P(x)
One is enough, usually people chose ε (e.g. Bourbaki in their set
theory book).



	
  

B.5. Relation to first order logic

The quantifier free epsilon calculus is a strict conservative exten-
sion of first order logic.

• Strict: there are formulae not equivalent to any formula of first
order logic, e.g. P(εxQ(x)) with P ,Q unary predicate sym-
bols.

• Conservative: regarding first order formula the epsilon calcu-
lus derive the same formulae.



	
  

B.6. A false intuition

Although these formulae are related, is not the case that for every
formulas S and P one has

S(εxP(x)) a` ∃x .(S(x)∧P(x))

Indeed, let S(x) be (x = x) and let P(x) be (x 6= x) i.e. ¬S(x).

Then

S(εxP(x)) ≡ S(εx .¬S(x)) ≡ S(τx .S(x)) ≡ ∀x .S(x) ≡ ∀x .x = x

which is clearly true.

But ∃x .(S(x)&P(x)) ≡ ∃x .(S(x)&¬S(x)) ≡ ∃x .(x = x & x 6= x)
which is clearly false.

The argument works with any formula of one variable that is uni-
versally true like here S(x)≡ (x = x).



	
  

B.7. Main results

ε-elimination (1st & 2nd ε-theorems), yielding the first correct proof
of Herbrand theorem.

First epsilon theorem When inferring a formula C without the ε

symbol nor quantifiers from formulae Γ not involving the ε

symbol nor quantifiers the derivation can be done within quan-
tifier free predicate calculus.

Second epsilon theorem When inferring a formula C without the
ε symbol from formulae Γ not involving the ε symbol, the
derivation can be done within usual predicate calculus.

Little else is known (non standard formulae, full cut-elimination,
models), erroneous results cf. Zentralblatt.



	
  

B.8. Hilbert’s view: epsilon substitution method

Epsilon was introduced by Hilbert firstly for arithmetic, in order to
establish arithmetic consistency by elementary means. (This was
before Gödel’s incompletess theorem).
Idea: prove that there is no proof of 0 = 1 from a finite collection of
axioms of Peano arithmetic.
Because of the espilon theorems one may assume that there are
no quantifiers rules, only epsilon terms in the instance of the ax-
ioms.
Chose a finite set of instance of the axioms.
Find an interpretation of epsilon terms that is ”the least integer x
such that P(x)” that is µxP(x) that make them all true.
To find them: Start with interpreting all epsilon terms by 0 If the in-
terpretation of some axiom is false, either there is no interpretaiton
or the itnerpretation of the epsilon term is too small.
If you can obtain a true assignment of the epsilon terms, as there
are no more quantifiers, you can only derive true statements, hence
no 0 = 1.



	
  

B.9. Admittedly slightly unpleasant

Heavy notation:

∀x∃yP(x ,y) is
∃yP(τxP(x ,y),y) is
P(τxP(x ,εyP(τxP(x ,y),y)),εyP(τxP(x ,y),y))



	
  

B.10. “Loose” use of ε

Some A are B . (E sentences of Aristotle)

B(εx . A(x))

Not equivalent to an ordinary formula, in particular not equivalent
to the standard: ∃x . A&B(x) but

B(εx . A(x))∧A(εx . A(x)) ` ∃x . B&A(x)

Indeed:

B(εx . A(x))∧A(εx . A(x))
` B(εx . B&A(x))∧A(εx . B&A(x))
` B&A(εx . (B&A(x))

On the other hand, one has:

∃x .A(x)&∀y(A(y)⇒ B(y)) ` B(εx .A(x))

because ε-terms are usual terms.



	
  

B.11. Intuitive interpretation

Kind of Henkin witnesses but actually there is no good interpreta-
tion that would entail completeness.

Here is a pleasant intituitive interpretation rule due to von Heusinger:
both “a” and “the” are interpreted by the an epsilon term, but the
“a” always refers to a new individual in the class, while “the” refers
to the most salient one.

(6) A student entered the lecture hall. He sat down. A student
left the lecture hall.

(7) A student arrived lately. The professor looked upset. The
student left.



	
  

B.12. Categorical model (F. Pasquali)

[Sorry for giving little details, this construction is ”heavy” category
theory]

Very recently Fabio Pasquali proposed a categorical model: an
epsilon logic/language can be interpreted in a Boolean hyper doc-
trine with a specific property (corresponding to the Axiom of Choice).

Formulae, terms and proofs are all interpreted by arrows. The ∃xF
arrow correspond to the ε-term arrow.

Such an hyper doctrine can be constructed from any elementary
Topos enjoying the Axiom of choice.

It is important to have a many sorted logic defined with types for
his construction.



	
  

C Aristotle square of oppositions
revisited



	
  

C.1. Standard A E I O formulae

• All students passed.

AP,Q = ∀x .(P(x)⇒ Q(x))

• No student passed.

EP,Q = ∀x .(P(x)⇒¬Q(x))

• Some student passed.

IP,Q = ∃x .(P(x)∧Q(x))

• Not all student passed. (original phrasing)
Some students did not pass. (different focus, but less am-
biguous)

OP,Q = ∃x .(P(x)∧¬Q(x))



	
  

C.2. The original square of opposition

Under some conditions (e.g. ∃x .P(x) holds, idealy) the formulae
A E I O constitute a square of opposition:

i) A a` ¬O and E a` ¬I

ii) It is never the case that > ` A and > ` E

iii) It is never the case that I ` ⊥ and E ` ⊥

iv) A ` I and E ` O



	
  

C.3. A picture of the original square

The usual diagrammatical representation is

A dd

$$

oo //

��

E

��
I
zz

::

oo // O



	
  

C.4. Epsilon E I A O formulae

Consider the epsilon versions of I and A:

IS ,P := S(εxP(x))

AS ,P := S(τxP(x))

Hence we have no choice for the E and O:

ES ,P := ¬IS ,P = ¬S(εxP(x))
OS ,P := ¬AS ,P = ¬S(τxP(x))

As we have seen earlier IS ,P ≡ S(εxP(x)) is not always equivalent
to ∃x .P(x)&S(x)



	
  

C.5. Hilbertian square of opposition

Let S (S ,P) be the square obtained with the following figures:
AS ,P , IS ,P , ES ,P and OS ,P .

In the Hilbert’s ε-calculus, for every formulas S(x) and P(x) (one
free variable), either S (S ,P) or S (S ,¬P) is a square of opposi-
tion. The proof strongly relies on tertium non datur. (Pasquali &
Retoré)

S(τxP(x))ee

%%

oo //

��

¬S(εxP(x))

��
S(εP)

yy

99

oo // ¬S(τP)

S(τx¬P(x))ff

&&

oo //

��

¬S(εx¬P(x))

��
S(εx¬P(x))

xx

88

oo // ¬S(τx¬P(x))



	
  

D Montagovian computational
semantics



	
  

D.1. Logic

Logic, philosophy of language, semantics...

Difficult to tell the difference!

From the beginning there are two related parts:

• lexical semantics: interpreting terms (words, noun phrases,
even quantified nouns phrases)

• formal/compositional semantics: interpreting propositions,
reasoning

There is a link between the two.

In particular quantification if concerned by this link: we quantify
over classes which sometimes are implicit, defined by the context.

(8) All students/they prefer going to parties than reading lec-
ture notes.



	
  

D.2. Computing logical forms à la Montague

Mind that there are TWO logics: composition / logical form:

One for expressing meanings:
formulae of first or higher order logic, single or multi

sorted.
One for meaning assembly:
proofs in intuitionistic propositional logic, λ -terms ex-

pressing the well-formedness of formulae.



	
  

D.3. Representing formulae within lambda calcu-
lus — connectives

Assume that the base types are
e (individuals, often there is just one) and
t (propositions)

and that the only constants are
the logical ones (below) and
the relational and functional symbols of the specific logical

language (on the next slide).

Logical constants:

• ∼ of type t→ t (negation)

• ⊃,&,+ of type t→ (t→ t)
(implication, conjunction, disjunction)

• two constants ∀ and ∃ of type (e→ t)→ t



	
  

D.4. Representing formulae within lambda calcu-
lus — language constants

The language constants for multi sorted First Order Logic:
• Rq of type e→ (e→ (....→ e→ t))

• fq of type e→ (e→ (....→ e→ e))
two-place predicates

likes λxeλy e (likese→(e→t) y) x

one-place predicates

cat λx .cate→t

sleeps λx .sleepe→t

two proper names

Evora Evora : e possibly(e→ t)→ t
Anne−Sophie Anne−Sophie : e

Normal terms (preferably η-long)
type t: formulae type e: terms.



	
  

D.5. Montague semantics. Syntax/semantics.

(Syntactic type)∗ = Semantic type
S∗ = t a sentence is a proposition
np∗ = e a noun phrase is an entity
n∗ = e→ t a noun is a subset of the set of

entities
(A\B)∗ = (B/A)∗ = A→ B extends easily to all syntactic

categories of a Categorial Gram-
mar e.g. a Lambek CG

See lecture by Moot & Retoré next week on the semantics of CG.



	
  

D.6. Montague semantics. Algorithm

1. Replace in the lambda-term issued from the syntax the words
by the corresponding term of the lexicon.

2. Reduce the resulting λ -term of type t its normal form corre-
sponds to a formula, the ”meaning”.



	
  

D.7. Ingredients: a parse structure & a lexicon

Syntactical structure
(some (club)) (defeated Leeds)
Semantical lexicon:

word semantics : λ -term of type (sent. cat.)∗
xv the variable or constant x is of type v

some (e→ t)→ ((e→ t)→ t)

λPe→t λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(P x)(Q x))))
club e→ t

λxe(clube→t x)
defeated e→ (e→ t)

λy e λxe ((defeatede→(e→t) x)y)
Leeds e

Leeds



	
  

D.8. Computing the semantic representation

1) Insert the semantics terms into the parse structure

2) β reduce the resulting term

((
λPe→t λQe→t (∃(e→t)→t (λxe(∧(P x)(Q x))))

)(
λxe(clube→t x)

))((
λy e λxe ((defeatede→(e→t) x)y)

)
Leedse

)
↓ β(

λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(clube→t x)(Q x))))
)(

λxe ((defeatede→(e→t) x)Leedse)
)

↓ β(
∃(e→t)→t (λxe(∧(clube→t x)((defeatede→(e→t) x)Leedse)))

)
Usually human beings prefer to write it like this:

∃x : e (club(x) ∧ defeated(x ,Leeds))



	
  

D.9. Montague: good architecture / limits

Good trick (Church):

a propositional logic for meaning assembly (proofs/λ -
terms)

computes
HOL / FOL formulae (formulae/meaning; no proofs)

Some limits:

no account of lexical semantics (restriction of selection,
meaning transfers etc.)

quantification is not as well addressed as it may seem



	
  

E Some inadequacies in the
Montagovian treatment of

quantification



	
  

E.1. Usual Montagovian treatment

(1) A tramp died on the pavement.

(2) Something happened to me yesterday.

Usual view (e.g Montague)

Quantifiers apply to the main predicate,

[something ] = ∃ : (e→ t)→ t

and when there is a restriction to a class (e.g. [some]) the quantifier
applies to two predicates:

λPe→tλQe→t(∃λx t.&(P x)(Q x)) : (e→ t)→ (e→ t)→ t



	
  

E.2. Quantifier: critics of the standard solution 1/3

Syntactical structure of the sentence 6= logical form.

(9) Orlando di Lasso composed some motets.
(10) syntax (Orlando di Lasso (composed (some (motets))))
(11) semantics: (some (motets)) (λx . OdL composed x)

The underlined predicate is not a proper phrase.



	
  

E.3. Quantifier: critics of the standard solution 2/3

Asymmetry class / predicate

(12) a. Some politicians are crooks.
b. ?? Some crooks are politicians.

(13) a. Some students are employees.
b. Some employees are students.

The different focus makes a big difference.



	
  

E.4. Quantifier: critics of the standard solution 3/3

There can be a reference before the utterance of the main predi-
cate (if any):

(14) Cars, cars, cars,... (Blog)
(15) Premier voyage, New-York. (B. Cendrars)
(16) What a thrill — My thumb instead of an onion. (S. Plath)
(17) Lundi, mercredi et vendredi, une machine de couleurs,

mardi et jeudi, une machine de blanc, le samedi, les draps,
le dimanche, les serviettes. (Blog)

Even when there is a main predicate, I do think that we interpret
the quantified NP as soon as we hear it.

(18) Most students go out on Thursday night.



	
  

E.5. Sorts, classes,...

Intuitively, there are several ways to quantify. For instance univer-
sal quantification can be viewed:

as a conjunction over the domain (model theoretical view)
as a property of the generic member of its class (proof

theoretical view)

Completeness makes sure that they both agree.

Nertheless the generic view requires a class, a type.

It is very rare to quantify over all possible entities.



	
  

E.6. Sorts and classes for generalised quantifiers

Frege’s single sorted logic:

(19) a. ∀x ∈M P(x) ≡ ∀x (M(x)⇒ P(x))

b. ∃x ∈M P(x) ≡ ∃x (M(x)&P(x))

This treatment does not apply to other quantifiers:

(20) a. for 1/3 of the x ∈M P(x) 6≡ for 1/3 of the x (M(x)⇒P(x))

b. for few x ∈M P(x) 6≡ for few x (M(x)&P(x))

Sorts and classes with specific quantifiers may be a good direc-
tion.



	
  

F The Montagovian generative
lexicon ΛTyn: a many sorted

framework



	
  

F.1. System F

Types: Terms

• t (prop)

• many entity types ei

• type variables α ,β , ...

• Πα . T

• T1→ T2

• Constants and variables
for each type

• (f T→UaT ) : U

• (λxT . uU) : T → U

• t(Λα. T ){U} : T [U/α]

• Λα .uT : Πα .T — no free
α in a free variable of u.

The reduction is defined as follows:

• (Λα .τ){U} reduces to τ[U/α]
(remember that α and U are types).

• (λx .τ)u reduces to τ[u/x ] (usual reduction).



	
  

F.2. Basic facts on system F

Logicians / philosophers often ask whether system F is safe?

We do not really need system F but any type system
with quantification over types. F is syntactically the
simplest. (Polynomial Soft Linear Logic of Lafont is
enough)

Confluence and strong normalisation — requires the com-
prehension axiom for all formulae of HA2. (Girard
1971)

A concrete categorical interpretation with coherence spaces
that shows that there are distinct functions from A to
B .

Terms of type t with constants of mutisorted FOL (resp.
HOL) correspond to multisorted formulae of FOL (resp.
HOL)

Possiblilty to have coercive sub typing for ontological
inclusion (cats are animals etc.)



	
  

F.3. Examples of second order usefulness

Arbitrary modifiers: ΛαλxAyα f α→R .((readA→R→t x) (f y))

Polymorphic conjunction:

Given predicates Pα→t, Qβ→t over respective types α, β ,
given any type ξ with two morphisms from ξ to α and to

β

we can coordinate the properties P ,Q
of (the two images of) an entity of type ξ :

The polymorphic conjunction &Π is defined as the term

&Π = ΛαΛβλPα→tλQβ→t

Λξ λxξ λ f ξ→αλgξ→β .
(andt→t→t (P (f x))(Q (g x)))



	
  

Figure 1: Polymorphic conjunction: P(f (x))&Q(g(x))
with x : ξ , f : ξ → α, g : ξ → β .



	
  

F.4. Types and terms: system F

System F with many base types ei (many sorts of entities)

e the sort of all entities
v events who play a particular role
animate

human beings

concepts ...

t truth values

Every normal term (η-long) of type t with free variables being log-
ical variables (of a the corresponding multi sorted logic L ) corre-
spond to a formula of L .



	
  

F.5. The Terms: principal or optional

A standard λ -term attached to the main sense:

• Used for compositional purposes

• Comprising detailed typing information (restrictions of selec-
tion)

Some optional λ -terms (none is possible)

• Used, or not, for adaptation purposes

• Each associated with a constraint : rigid, ∅

Both function and argument may contribute to meaning transfers.



	
  

F.6. RIGID vs FLEXIBLE use of optional terms

RIGID

Such a transformation is exclusive:

the other aspects of the same word are not used.

Each time we refer to the word it is with the same aspect.

FLEXIBLE

There is no constraint.

Any subset of the flexible transformation can be used:

different aspects of the words can be simultaneously used.



	
  

F.7. Correct copredication

word principal λ -term optional λ -terms rigid/flexible
Liverpool liverpoolT IdT : T → T (F)

t1 : T → F (R)
t2 : T → P (F)
t3 : T → Pl (F)

is spread out spread out : Pl → t
voted voted : P → t
won won : F → t

where the base types are defined as follows:

T Town
F football club
P people
Pl place



	
  

F.8. Meaning transfers

(21) Liverpool is spread out.
(22) Liverpool won.
(23) Liverpool voted.

spread outPlace→tLiverpoolTown

Type mismatch, use the appropriate optional term.

spread outPlace→t(tTown→Place
3 LiverpoolTown)



	
  

F.9. (In)felicitous copredications

Use polymorphic ”and”... specialised to the appropriate types:

(24) Liverpool is spread out and voted.
Town→ Place and Town→ People
fine

(25) * Liverpool won and voted.
Town→ FootballClub and Town→ People
blocked because the first transformation is rigid.
(sole interpretation: football team or committee voted)



	
  

F.10. Liverpool is spread out

Type mismatch:

spread outPl→t(LiverpoolT )

spread out applies to “places” (type Pl) and not to “towns” (T )

Lexicon tT→Pl
3 turns a town (T ) into a place (Pl)

spread outPl→t(tT→Pl
3 LiverpoolT ))

only one optional term, the (F)/ (R)difference is useless.



	
  

F.11. Liverpool is spread out and voted

Polymorphic AND yields: (&Π(spread out)Pl→t(voted)P→t)

Forces α := Pl and β := P , the properly typed term is

&Π{Pl}{P}(is wide)Pl→t(voted)P→t

It reduces to:

Λξ λxξ
λ f ξ→α

λgξ→β (andt→t)→t (is wide (f x))(voted (g x)))

Syntax applies it to “Liverpool” so ξ := T yielding

λ f T→PlλgT→P(and (is wide (f LiverpoolT ))(voted (g LiverpoolT )))).

The two flexible optional λ -terms t2 : T → P and t3 : T → Pl yield

(and (is widePl → t (tT→Pl
3 LiverpoolT ))(votedPl→t (tT→P

2 LiverpoolT )))



	
  

F.12. Liverpool voted and won

As previously but with won instead of spread out.

The term is:
λ f T→PlλgT→P(and (won (f LiverpoolT ))(voted (g LiverpoolT ))))

for “won”, we need to use the transformation t1 : T → F

but T1 is rigid, hence we cannot access to the other needed trans-
formation into a “place”.



	
  

F.13. Other phenomena handled by the same model

Virtual traveller / fictive motion (with Moot & Prévot)
“The road goes down for twenty minutes”

Deverbals: meanings copredications (with Livy Real):
“A assinatura atrasou três dias / * e estava ilegı̀vel.”

Plurals: collective / distributive readings (with Moot)
(The players from) Benfica won although they had the flu.

Generalised quantifiers (“most”) with generic elements.
The Brits love France.



	
  

G Determiners, quantifiers in the
Montagovian generative lexicon



	
  

G.1. Typed Hilbert operators

Single sorted logic, Frege / Montague style: ε : (e→ t)→ e

Many sorted:

ε∗ : Λα . α

or

ε : Λα . (α → t)→ α

???

either type/formula entails the other:

ε∗ = ε{Λα .α}(λxΠα.α . x{t}) : Λα . α

ε = ε∗{Λα . (α → t)→ α}

ε is more general because type can be mirrored as predicates, but
not the converse.

There is no problem of consistency with such constants whose
type in unprovable (like fix point Y ).



	
  

G.2. Intuitive interpretation and logic:
some perspectives

Cohabitation of types and formulae of first/higher order logic:

Typing (∼ presupposition) is irrefutable sleeps(x : cat)
Type to Formula:

type cat mirrored as a predicate ĉat : e→ t
Formula to Type?

Formula with a single free variable ∼ type?
cat(x)∧belong(x , john)∧ sleeps(x) ∼ type?
At least it is not a natural class.



	
  

G.3. Computing the proper semantics reading

A cat. catanimal→t (ε{animal}catanimal→t) : animal

Presupposition F (εxF ) is added: cat(ε{animal}catanimal→t)

For applying ε to a type say cat,
any type has a predicative counterpart cat (type) ĉat : e→ t.
(domains can be restrained / extended)



	
  

G.4. Avoiding the infelicities
of standard Montague semantics

εxF : individual.

1. Can be interpreted as an individual without the main predi-
cate:
it is a term.

2. Follows syntactical structure:
it is a term, the semantics of an NP.

3. Asymmetry subject/predicate:
P(εQ) 6≡ Q(εP).



	
  

G.5. E-type pronouns

ε solves the so-called E-type pronouns interpretation (Gareth Evans)
where the semantic of the pronoun is the copy of the semantic of
its antecedent:

(26) A man came in. He sat dow.
(27) ”He” = ”A man” = (εx M(x)).



	
  

G.6. Difference with choice functions

Choice functions, Skolem symbols:

• One per formula: given one formula one enrich the formal
language with a new function symbol and usually, there are
no function symbols, when interpreting natural language: as
a dictionary, the logical lexicon should be finite.

• No specific deduction system.

• The symmetry problem is still there: it does not go beyond
classical logic and the E sentences are still improperly sym-
metric.

• choice function are not syntactically defined they have to be
added one by one in the FOL language.



	
  

G.7. Universal quantification

Observe that our setting allow two ways to do so (as for the ep-
silon):

if the noun is a type, the operator should apply to a type and yields
an object of this type: Πα . α

when it is a property the type is Πα . (α → t)→ α



	
  

H Conclusion



	
  

H.1. Semantic analysis of natural language

We propose in our type theoretical framework for lexical and com-
positional semantics a formulation of quantification, in particular
the most frequent ones, existentials, which avoids the drawbacks
of the usual interpretation:

epsilon terms follow the syntactic structure
they refer to individuals
they avoid the unpleasant symmetry between CN and

VP in existential statements.

The difference and relation between types and properties, type
theory and first order logic.



	
  

H.2. Logical perspectives

Epsilon open new perspectives on:

• underspecified scope: P(τx . A(x),εx . B(x))

• generalised quantifiers:

If all roads lead to Rome, most segments of the
transportation system lead to Roma Termini! (Blog:
Ron in Rome)

• Epsilon in type theory?

• Intuistionistic versions?



	
  

H.3. More on Epsilon

HILBERT’S EPSILON AND TAU IN LOGIC, INFORMATICS AND
LINGUISTICS

Université de Montpellier 10 11 12 juin 2015

Organised by LIRMM CNRS with the support of ANR Polymnie
and Université de Montpellier

https://sites.google.com/site/epsilon2015workshop/

https://sites.google.com/site/epsilon2015workshop/

