
!

Sémantique du langage naturel

en théorie des types

Christian Retoré

Université de Bordeaux & IRIT (Toulouse)

Séminaire TEXTE
LIRMM, Montpellier, 14 nov. 2012

!

A Foreword – contents

!

A.1. Merci... et... sorry!

... au CNRS et à l’IRIT (Toulouse),
qui me donnent d’excellentes conditions de recherche
(mais pour un an seulement)

... à Violaine Prince et à Jean-Philippe Prost de m’avoir invité.

Désolé, les transparents sont en anglais
(des passages sont repris de mon cours à ESSLLI)

!

A.2. Contents, roughly speaking

All time favourites:

simply typed lambda calculus
formulae in simply typed lambda calculus
Montague semantics

Extending the type system to second order

second order typed lambda calculus
modelling lexical pragmatics
a language for quantification, plurals,

Questions:

base types? acquisition
multi sorted logic vs. type theory
sub-typing (specialisation relations)

!

B Logical formulae as simply
typed lambda terms and

compositional semantics

!

B.1. Mind that there are TWO logics

One logic for expressing meanings:
formulae of first or higher order logic, single or multi sorted.

One logic for meaning assembly:
proofs in propositional logic,
of the well-formedness of formulae.

!

B.2. Natural deduction / simply typed lambda
calculus

Proofs are trees of formulae,

• leaves are hypothesis (that may be cancelled or not)

• the root is the conclusion

• branching are rules

plus the indication of the rule which cancelled a cancelled hy-
pothesis.

!

B.3. Types and terms: Curry-Howard

Introduction rules Elimination rules

Implication

A�[A]
a

�[A]
a....

B

A! B

!
i

A A! B

B

!
e

some As are

cancelled.

We shall focus on the ! connective.

A proof of A! B is a function that maps proofs of A to proofs
of B .

Think of a formula/type as the set of its proofs.

!

B.4. Terms

Types are.... formulae.

l -terms encode proofs u : U means u is a term of type U .

Inside term one rather writes u

U .

1. hypotheses we have a countable set of variables of each
type which are terms of this type

2. constants = never cancelled hypotheses there can be as
many constants of each type as needed

3. ! introduction if x : U is a variable and t : T then (lx

U

. t) :

U ! V .

4. ! elimination if f : U ! V and t : U then f (t) : V

With such typed terms we can faithfully encode proofs.

Variables are hypotheses (that are simultaneously cancelled).

!

B.5. Reduction

A redex is the sequence of an introduction rule of the connective
C followed by an elimination of the same connective C .

In the ! fragment there is a single reduction rules for !:

(lx : U . t)U!V

u

U reduces to t[x := u] : V

Every proof / l -term reduces to a normal form (weak normali-
sation) no matter how one proceeds (strong normalisation).

Normalisation is confluent or Church-Rosser (not difficult but
tedious).

So every lambda term reduces to a unique normal lambda term.

!

B.6. Categorical interpretation of simply typed
lambda calculus

A way to implement to prove coherence:

define a category (a CCC) with

formulae/ types: structured sets defined from arbitrary struc-
tured sets corresponding to propositional variables / base types

morphisms: functions preserving the structure

in such a way that a closed term t of type A to B corresponds to
a function [t] from A to B

whenever t reduces to t’ the functions [t] and [t’] are the same

!

B.7. Representing multi sorted formulae within
lambda calculus — connectives

Assume that the base types are
e
i

(sorts for individuals, often there is just one) and
t (propositions)

and that the only constants are
the logical ones (below) and
the relational and functional symbols of the specific log-

ical language (on the next slide).

We need the logical constants:

• ⇠ of type t! t (negation)

• �,&,+ of type t ! (t ! t) (implication, conjunction, dis-
junction)

• for each i two constants 8 and 9 of type (e
i

! t)! t

!

B.8. Representing formulae within lambda cal-
culus — language constants

The language constants for multi sorted First Order Logic:

• R

q

of type e
q

1

! (e
q

2

! (....! e
qsq
! t))

e.g. likes: e ! e ! t sleeps e ! t

• f

q

of type e
q

1

! (e
q

2

! (....! e
qsq
! e

q

0

))

!

B.9. From formulae to normal lambda terms

A rather simple exercice: follow the structure of the formulae.

Examples: 8x . barber(x)� shaves(x ,x)

8(lx

e
. (� barber(x))((shaves(x))(x)))

!

B.10. Extension: higher order logic...

A three place predicate variable: X : (e! e! e! t)

The quantifier over such variables: 83

1

: (e! e! e! t)! t

w has any property that an idiot has.

8P(9x stupid(x) and P(x))� P(w)

Exercice: write it in lambda calculus.

!

B.11. From normal lambda terms to formulae

This relies on the (long) normal form of lambda terms.

We assume a refinement, that they are beta eta long: long bh-
normal forms (Huet76) which are defined using the auxiliary
notion of atomic forms:

• Variables are atomic form.

• (M N) is an atomic form when M : A! B is an atomic term
and N : A is in long bh-normal form.

• Atomic forms whose type is a base type are long bh-normal
forms.

• lx

A

. t is a long bh-normal form whenever t is one as well.

!

B.12. Why using long bh-normal forms?

Every term as a unique long bh-normal form, which is obtained
by beta reduction and then some eta expansion steps.

This makes sure that inside a normal lambda term whenever a
subterm is of type A!B its is a lambda abstraction. (Sub)terms
like 8sleepe!t are avoided.

This is achieved by replacing

any sub term like likes

e!e!t without argument with lx

e
.ly

e((likesx)y)

and a sub term (8sleep) : t with 8(lx

e(sleep(x))).

!

B.13. The shape of normal lambda terms

lx

i

1

· · ·lx

in . ht

1

· · · t
p

Possibly n = 0 no l ahead.

h: is a variable or a constant of type U

1

! · · ·! U

p

! X

The t

i

are themselves normal l -terms

The variable/constant h correspond to the hypothesis contain-
ing the conclusion as a subformula —as observed from the sub
formula property.

!

B.14. Normal terms of type t are formulae

This can be shown by structural induction on the shape of the
l -term, e.g. they cannot be any head ls, and proceed by cases
on the head variable/constant:

1. normal l -terms of type e
i

with x

k

: e
j

as only free variables
are logical terms with the same free variables

2. normal l -terms of type t with x

i

: e as only free variables are
logical formulae with the same free variables and bound
variables.

The long hb normal form replaces say f

a!b by lx :a(fx) to have
a better correspondence between the type and formula vari-
ables since every arrow-typed term starts with a l .

!

B.15. Remarks in view of Montague semantics

Non normal lambda terms of type t coming from syntax do not
really correspond to formulae.

Hence we need:

• normalisation

• a proof that the normal terms do correspond to formulae,
as we just shown.

!

B.16. Back to the roots: Montague semantics.
Types.

Simply typed lambda terms

types ::= e | t | types ! types

chair , sleep e ! t

likes transitive verb e ! (e ! t)

!

B.17. Back to the roots: Montague semantics.
Syntax/semantics.

(Syntactic type)⇤ = Semantic type
S

⇤ = t a sentence is a proposition
np

⇤ = e a noun phrase is an entity
n

⇤ = e ! t a noun is a subset of the set of
entities

(A\B)⇤ = (B/A)⇤ = A! B extends easily to all syntac-
tic categories of a Categorial
Grammar e.g. a Lambek CG

!

B.18. Back to the roots: Montague semantics.
Logic within lambda-calculus 1/2.

Logical operations (and, or, some, all the,.....) need constants:

Constant Type
9 (e ! t)! t

8 (e ! t)! t

^ t ! (t ! t)
_ t ! (t ! t)
� t ! (t ! t)

!

B.19. Back to the roots: Montague semantics.
Logic within lambda-calculus 2/2.

Words in the lexicon need constants for their denotation:

likes lxly (likes y) x x : e, y : e, likes : e ! (e ! t)
<< likes >> is a two-place predicate

Garance lP (P Garance) P : e ! t, Garance : e

<< Garance >> is viewed as

the properties that << Garance >> holds

!

B.20. Back to the roots: Montague semantics.
Computing the semantics. 1/5

1. Replace in the lambda-term issued from the syntax the
words by the corresponding term of the lexicon.

2. Reduce the resulting l -term of type t its normal form cor-
responds to a formula, the ”meaning”.

!

B.21. Back to the roots: Montague semantics.
Computing the semantics. 2/5

word semantic type u

⇤

semantics : l -term of type u

⇤

x

v

the variable or constant x is of type v

some (e ! t)! ((e ! t)! t)
lP

e!t

lQ

e!t

(9(e!t)!t

(lx

e

(^
t!(t!t)(P x)(Q x))))

statements e ! t

lx

e

(statement
e!t

x)
speak about e ! (e ! t)

ly

e

lx

e

((speak about

e!(e!t) x)y)
themselves (e ! (e ! t))! (e ! t)

lP

e!(e!t) lx

e

((P x)x)

!

B.22. Back to the roots: Montague semantics.
Computing the semantics. 3/5

The syntax (e.g. a Lambek categorial grammar) yields a l -term
representing this deduction simply is

((some statements) (themsleves speak about)) of type t

!

B.23. Back to the roots: Montague semantics.
Computing the semantics. 4/5

⇣�
lP

e!t

lQ

e!t

(9(e!t)!t

(lx

e

(^(P x)(Q x))))
�

�
lx

e

(statement
e!t

x)
�⌘

⇣�
lP

e!(e!t) lx

e

((P x)x)
�

�
ly

e

lx

e

((speak about

e!(e!t) x)y)
�⌘

b�
lQ

e!t

(9(e!t)!t

(lx

e

(^
t!(t!t)(statemente!t

x)(Q x))))
�

�
lx

e

((speak about

e!(e!t) x)x)
�

b�
9(e!t)!t

(lx

e

(^(statement
e!t

x)((speak about

e!(e!t) x)x)))
�

!

B.24. Back to the roots: Montague semantics.
Computing the semantics. 5/5

This term represent the following formula of predicate calculus
(in a more pleasant format):

9x : e (statement(x) ^ speak about(x ,x))

This is a (simplistic) semantic representation of the analysed
sentence.

Advertisement: for more details on classical
Montague semantics see chapter 3 of ”The
logic of categorial grammars” (Moot, Retoré
Springer, 2012).

!

B.25. Good overall architecture / limits

Good trick (Church): a propositional logic for meaning assembly
(proofs/l -terms) to compute formulae another logic with first
order (formulae/meaning no proofs)

Of course, we would like to use many sorts to reject:

* The chair barks.

”barks” requires a subject of type ”dog”.

Many types (how many) ?

If we do not want too many operations, we need to factor similar
operations acting on types.

!

C Second order lambda
calculus (Girard’s system F)

!

C.1. Types

• Constants types e
i

and t, as well as any type variable
a ,b , ... in P, are types.

• Whenever T is a type and a a type variable which may but
need not occur in T , ⇤a . T is a type.

• Whenever T

1

and T

2

are types, T

1

! T

2

is also a type.

!

C.2. Terms

• A variable of type T i.e. x : T or x

T is a term.
Countably many variables of each type.

• (f t) is a term of type U whenever t : T and f : T ! U .

• lx

T

. t is a term of type T ! U whenever x : T , and t : U .

• t{U} is a term of type T [U/a] whenever t : ⇤a . T , and U

is a type.

• ⇤a .t is a term of type ⇤a .T whenever a is a type variable,
and t : T without any free occurrence of the type variable
a. (Type of x in 8a .x

a???)

!

C.3. Extension Curry-Howard

Types are quantified propositional formulae.

Terms are proofs in intuitionistic quantified propositional calcu-
lus.

Restriction q ! a and q certainly yield a, but fortunately from
this one cannot conclude that under assumption q one has
8a . a.

!

C.4. Reduction

The reduction is defined as follows:

• (⇤a .t){U} reduces to t[U/a] (remember that a and U are
types).

• (lx .t)u reduces to t[u/x] (usual reduction).

Reduction is strongly normalising and confluent (Girard, 1971):
every term of every type admits a unique normal form which is

reached no matter how one proceeds.

(Difficult: the proof quantifies over all subsets of terms that be-
haves like stronly normalising terms)

!

C.5. Unnecessary type operators

The following defined types have the same elimination and in-
troduction behaviour.

Product A^B can be defined as
⇧a . (A! B ! a)! a

Sum A_B can be defined as
⇧a . (A! a)! (B ! a)! a

Existential quantification:
⌃b . ((⇧a . (V [X]! b))! b)

!

C.6. Inductive types (cf. ML, CaML, Haskell)

Integers
⇧a . a ! (a ! a)! a

List of b objects. (the b can be quantified as well)
⇧a . a ! (b ! a ! a)! a

Binary trees
⇧a . a ! (a ! a ! a)! a

Binary trees with leaves L and nodes N

⇧a . (L! a)! (N ! a ! a ! a)! a

!

C.7. What can be defined, computed

The function that can be programmed are the ones that can be
proved total in second order Heyting arithmetic, that for such
issues as the same power as second order Peano arithmetic.

All data types can be defined, and for such types their only
normal terms are the expected ones.

More than polymorphic typed functional languages but every
program terminates — there is no fixed point operator Y : ⇧a . (a !
a)! a.

!

C.8. Coherence, categorical interpretation and
normalisation

System F may seem unsafe: one can define a type via ref-
erence to all types, including itself. Indeed, some proposed
extension collapse.

An argument is strong normalisation since there is no normal
proof of ? = ⇧a . a (relies on the comprehension axiom for all
formulae of HA

2

).

Another argument is a concrete categorical interpretation (e.g.
with coherence spaces) that shows that there are distinct func-
tions from A to B .

Every term reduces anyhow to its unique normal form.
Terms of type t with constants of mutisorted FOL (resp.
HOL) correspond to multisorted formulae of FOL (resp. HOL)

!

D System F based semantics
and pragmatics

!

D.1. Examples

Dinner was delicious but took ages. (event / food)

* The salmon we had for lunch was lightning fast. (animal / food)

I forgot on the table my preferred book on logic. (physical / info)

I carried the books from the shelf to the attic since i already
read them. (phys. / info)

Liverpool is a poor town and an important harbour. (people /
geographic)

* Liverpool defeated Chelsea and is an important harbour. (foot-
ball / geographic)

(Nevertheless: Barcelona won four champions leagues and or-
ganised the olympiads. Libourne, a small south-west town, de-
feated Lille.)

!

D.2. Types and terms: system F

System F with many base types e
i

(many sorts of entities)

v (for events who play a particular role in l -DRT)

t truth values

types variables roman upper case, greek lower case

usual terms that we saw, with constants (free variables that can-
not be abstracted)

Every normal terms of type t with free variables being logical
variables (of a the corresponding multi sorted logic L) corre-
spond to a formula of L.

!

D.3. Examples of second order usefulness

Arbitrary modifiers: ⇤alx

A

y

a

f

a!R

.((readA!R!t

x) (f y))

Given typesa, b and g

three predicates P

a!t, Q

b!t, R

g!t,
over entities of respective kinds a, b and g

for any x with three morphisms from x to a, to b , and to g

we can coordinate the properties P ,Q,R of (the three images
of) an entity of type x :

AND3= ⇤a⇤b⇤g

lP

a!t

lQ

b!t

lR

g!t

⇤x lx

x

l f

x!a

lg

x!b

lh

x!g

.

(and(and (P (f x))(Q (g x)))(R (h x)))

!

D.4. Definite determiner e.g. ”the”: à la von Heusinger

We use a selection operator i : (⇧a . (a ! t)! a which picks
up (according to pragmatics considerations) an object in a class
defined by a property say P of objects of type t.

Thus i{t}P is an object of type t —fine! but we need to say
that this object enjoys P: that is:
P(i{t}P), which is added as a presupposition a universal one.

Remark 1: in l -DRT this proposition can be propagated to the
top level via the operator �).

Remark 2: ”the” acts on a type, it is also possible to view ”the”
as a constant iota of type 8a .a. (observe that this makes any
type derivable and habited, but one can say ”the unicorn”).

!

D.5. Principles of our lexicon

• Remain within realm of Montagovian compositional seman-
tics (for compositionality)

• Allow both predicate and argument to contribute lexical in-
formation to the compound.

• Integrate within existing discourse models (l -DRT).

We advocate a system based on optional modifiers.

!

D.6. The Terms: main / standard term

• A standard l -term attached to the main sense:

– Used for compositional purposes
– Comprising detailed typing information
– Including slots for optional modifiers
– e.g. ⇤a⇤blx

a

y

b

f

a!A

g

b!F

.((eatA!F!t (f x)) (g y))
– e.g. Paris

T

!

D.7. The Terms: Optional Morphisms

– Each a one-place predicate
– Used, or not, for adaptation purposes
– Each associated with a constraint : rigid, ?

⇤

✓
Id

F!F

? ,
f

Living!F

grind

rigid

◆

⇤
⇣

Id

T!T

? ,
f

T!L

L

? ,
f

T!P

P

? ,
f

T!G

G

rigid

⌘

!

D.8. A Complete Lexical Entry

Every lexeme is associated to an n-uple such as:

⇣
Paris

T

,

lx

T
. x

T

? ,

lx

T
.(f T!L

L x)
? ,

lx

T
.(f T!P

P x)
? ,

lx

T
.(f T!G

G x)
rigid

⌘

!

D.9. RIGID vs flexible use of optional morphisms

Type clash: (lx

V

. (PV!W

x))tU

(lx

V

. (PV!W

x)) (f U!V

t

U)

f : optional term associated with either P or t

f applies once to the argument and not to the several occur-
rences of x in the function.

A conjunction yields

(lx

V

. (^ (PV!W

x) (QV!W

x)) (f U!V

t

U),

the argument is uniformly transformed.

Second order is not needed, the type V of the argument is
known and it is always the same for every occurrence of x .

!

D.10. FLEXIBLE vs. rigid use of optional mor-
phisms

(lx

?

. (· · ·(PA!X

x

?) · · ·(QB!Y

x

?) · · ·)tU :
type clash(es) [Montague: ? = A = B e.g. e]

(⇤x .l f

x!A

.lg

x!B

. (· · ·(PA!X (fxx)) · · ·(QB!Y (gx

x)) · · ·))
{U} f

U!A

g

U!B

t

U

f ,g : optional terms associated with either P or t.

For each occurrence of x

with different A,B , ... with different f ,g , ... each time.

Second order typing:

1) anticipates the yet unknown type of the argument

2) factorizes the different function types in the slots.

The types {U} and the associated morphism f are inferred from
the original formula (lx

V

. (PV!W

x))tU .

!

D.11. Standard behaviour

f : physical objects

small stone

smallz }| {
(lx

j

. (small

j!j

x))

stonez}|{
t

j

(small t)j

!

D.12. Qualia exploitation

wondering, loving smile

wondering, lovingz }| {
(lx

P

. (and

t!(t!t) (wondering

P!t

x) (loving

P!t

x)))

smilez}|{
t

S

(lx

P

. (and

t!(t!t) (wondering

P!t

x) (loving

P!t

x))))(f S!P

a

t

S)
(and (loving (f

a

t)) (loving (f
a

t)))

!

D.13. Facets (dot-objects): incorrect copredica-
tion

Incorrect co-predication. The rigid constraint blocks the copred-
ication e.g. f

Fs!Fd

g

cannot be rigidly used in

(??) The tuna we had yesterday was lightning fast and

delicious.

!

D.14. Facets, correct co-predication.
Town example 1/3

T town L location P people

f

T!P

p

f

T!L

l

k

T København

København is both a seaport and a cosmopolitan capital.

!

D.15. Facets, correct co-predication.
Town example 2/3

Conjunction of cospl

P!t , cap

T!t and port

L!t , on k

T

If T = P = L = e, (as in Montague)

(lx

e(and

t!(t!t)((and

t!(t!t) (cospl x) (cap x)) (port x))) k .

Conjunction between three predicates... use AND3

⇤a⇤b⇤g

lP

a!t

lQ

b!t

lR

g!t

⇤x lx

x

l f

x!a

lg

x!b

lh

x!g

.

(and(and (P (f x))(Q (g x)))(R (h x)))

f , g and h convert x to different types (flexible).

!

D.16. Facets, correct co-predication.
Town example 3/3

AND applied to P and T and L and to cospl

P!t and cap

T!t and
port

L!t yields:

⇤x lx

x

l f

x!a

lg

x!b

lh

x!g

.

(and(and (cospl

P!t (f
p

x))(cap

T!t (f
t

x)))(port

L!t (f
l

x)))

We now wish to apply this to the type T and to the transforma-
tions provided by the lexicon. No type clash with cap

T!t , hence
id

T!T works. For L and P we use the transformations f

p

and f

l

.

(and

t!(t!t)

(and

t!(t!t)

(cospl(f
p

k

T)P)t)(cap(id k

T)T)t)t(port (f
l

k

T)L)t)t

!

E The logical syntax of
(generalised) quantification and

generics

!

E.1. Why type theory for the syntax of seman-
tics

opposed to Frege’s single sort view:

8x :A P(x) ⌘ 8x . A(x)! P(x)

(impossible for ”most of”)

in ancient and especially medieval philosophy (in particular Abu
Barakat, Avicenna):

we assert properties of things as being member of some
class (= type?)

There are less types than logical formulae with a single free
variable, they are more constrained, and not any formula de-
fines a comparison class.

!

E.2. A personal view on the border
between semantics and pragmatics

• semantics is encoded by the terms:
they yield formulae by compositionality

• pragmatics is encoded in the types
they are flexible and determined by the context

!

E.3. Generic NPs

How do we logically formulate ”most of” (much more than ”the
majority of”) generic elements

(1) The AKC notes that any dog may bite [...]

(2) The Brits love France.

(3) Un chien, ça peut toujours mordre.

idea to consider a fictive of fake element, like the t and e of
Hilbert like the i of van Heusinger.

(actually there is an other reading for 2 that we are just starting
to think about: Brits love France more than similar classes do
(Germans, Italians, etc.))

!

E.4. Radical minimalism / contextualism

Once we we appeal to comparison classes (a type) and its
generic element we can address the following puzzle issued
from Frege’s view of a single domain:

• My daughter is tall and thin for a 2 year old.

• My two-year-old can’t get his own cup [...] because he
can’t reach, [...]

Carlotta who is a two year old girl it can be both tall and not tall,
depending on her comparison class (her type in our type the-
oretic framework). Our type theoretical framework provides an
account for such phenomena comparing Carlotta to the generic
element of the corresponding class.

!

E.5. Quantifiers in syntax

How do we derive formulae with generics from syntactic struc-
tures?

Syntax, natural or logical, is preferably finitely generated (oth-
erwise, is it syntax?)

In usual Montague semantics, with a single individual type, first
order quantification has type (e! t)! t as soon as we have a
much richer type system, we would need a quantifier per type.

In F we have a single constant 8 of type

⇧a . (a ! t)! t

It can be applied (specialised) to any type T to obtain the quan-
tifier over the type T :

8{human}(lx

human

.mortal

human!t(x)).

!

E.6. The syntax of ”most” generic elements

Observe that there is a difference between most (which refers
to a cognitively accessible class) and ”mots of the ... that ...”
which refer to an arbitrarily set.

Consequently we shall have a first operator to obtain the generic
from a type: a constant] of type ⇧a . a

When applied to a type T , this constant] yields the element
]{T} of type T which is assumed to be the specimen of T :]
maps each type to its specimen.

As opposed to standard work, we do not say that the gener-
alised quantifier is a property of two predicates: indeed we are
in a typed version, and the restriction predicate of the usual
setting is the type.

!

E.7. The operator for ”most of the ... that ...”

We need
another constant] of type ⇧a . (a ! t)! a

which creates a generic element corresponding to a property
P : t ! t

But it is not an ordinary element of a but an element of the
subset defined by the property, say P, of type t ! t. As for the
definite article, one adds a presupposition, P(]{U}P)

When using l -DRT instead of plain l -calculus there is a way for
such property to percolate on top level using the � of Muskens.

!

E.8. Being tall (as a child) and
not tall (as a human being)

We have some term and functions, with standard types: Car-
lotta Carlotta : 2yoGirl (constant) a class of child (these classes
are vague)

h : 2yoGirl ! human (optional l -term) these classes are
included in the human class.

We can thereafter say that she is tall if she is taller than the
average element in her class, an interval, and the class can be
modified according to the context.

But the important point is that we can state such things and
that they participate without any problem to the compositional
process.

!

E.9. Being tall (as a child) and
not tall (as a human being): computation

Here are the terms for:

height : ⇧a . (a ! float! t)

<: float! float! t

The term for tall below says that it is higher than any oh the
heightS of the specimen. That’s a possible view, to turn func-
tions into relations for such an element.

tall ⇤a .lx

a8{float}lh

float

s

8{float}lh

float

height{a}(]{a},h
s

)^height{a}(x ,h)) h

s

< h

type of tall: ⇧a .a ! t

!

F Other phenomena

!

F.1. Plurals

(4) John and Mary sneezed. (= John sneezed and Mary
sneezed, OK).

(5) John and Mary met. (6= *John met and Mary met, OK).

(6) The students wrote a paper. (“covering” reading: each
student was part of group which wrote a paper)

(7) Each student wrote a paper. (no “covering” reading, OK)

(8) Three committees met. (two readings) OK

(9) (?) The committee sneezed (coercion?)

With operators (similar to the treatment of generalised quantifi-
cation)

!

F.2. Virtual traveller (fictive motion)

(10) The path descended abruptly.

(11) The path descends for two hours.

(12) The tarred road runs along the coast for two hours.

With transformation both from the verb and for the path...
be careful for the virtual traveller not to be tarred! There are
trickier cases:

(13) The fence zigzags from the plateau to the valley.

(14) The highway crawls through the city.

!

G Conclusion & prospects

!

G.1. What we have seen so far

A general framework for

the logical syntax of compositional semantics
some lexical semantics phenomena

Guidelines:

Terms: semantics, sense, instructions for computing
references

Types: pragmatics, defined from the context
Idiosyncratic (language specific) transformations com-

patible with the types but not forced by the types.
J’ai crevé. / ??? I went flat?
Ma voiture est crevée (roue) / ??? bouchée (injecteur)

Practically: implemented in Grail, Moot’s wide coverage cat-
egorial parser, for fragment with a hand-typed semantic lexicon
— but with l -DRT instead of HOL in lambda calculus.

!

G.2. Perspective 1: base types, relations & their
acquisition

What are the base types?

How can they be acquired?

Can the optional modifiers be acquired,
at least the specialisation modifiers?

Lexical data base Jeux de mots (M. Lafourcade).

!

G.3. Perspective 2

What would be an adequate notion of subtyping? (for a sys-
tematic coding of the ontological specialisation relations that
are often admissible in the language).

What about categorical interpretations (e.g. coherence spaces)
as ontologies? (ontology-related question)

!

G.4. Perspective 3: formulae vs. types

Typing (⇠ presupposition) is irrefutable sleeps(x : cat)

Type to Formula: a type cat can be mirrored as a formula that
can be refuted cat : e! t cat(x) : t

Formula to Type? Is any formula with a single free variable a
type? cat(x)^belong(x , john)^ sleeps(x):type?

At least it is not an implicit comparison class.

!

G.5. Perspective 4:
quantitative and compositional semantics

Our model integrates some lexical notions in compositional se-
mantics.

Can we say something about the connection between vector
semantics and compositional semantics?

Usually:
vector semantics: the topic that a discourse speaks about.
compositional semantics: which propositions are asserted.

Link with the work by A. Preller, V. Prince, et al.?

!

G.6. Some references

Work presented in this talk:
Montague semantics: chapter 3 of the Logic of categorial grammars, Springer
2012 (R. Moot, Ch. Retoré)

A lexicon for compositional semantics and lexical pragmatics: article in the
Journal of Logic, Language and Information, 2010 (Ch. Bassac, B. Mery,
Ch. Retoré)

Fictive motion, virtual traveller in French with plain Montagovian l -terms
(TALN 2011) or in English with l -DRT (CID 2011) (R. Moot, L. Prévot, Ch.
Retoré)

Quantification: ”most” in this setting (article in RLV) (Ch. Retoré)

Plurals: a talk at the Coconat workshop (R. Moot, Ch. Retoré)

Related work:
Nicholas Asher Lexical meaning in context: a web of words. Cambridge
University Press 2011

Zhaohui Luo Contextual Analysis of Word Meanings in Type-Theoretical
Semantics in Logical Aspects of Computational Linguistics 2012, Springer
LNCS 6736 edited by S. Pogodalla and J-Ph. Prost.

http://hal.inria.fr/inria-00408308
http://hal.inria.fr/inria-00408308
http://hal.inria.fr/hal-00650635
http://hal.inria.fr/hal-00650635
http://hal.archives-ouvertes.fr/hal-00607691
http://hal.archives-ouvertes.fr/hal-00677312
http://hal.inria.fr/hal-00650644

