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A.1. Mind that there are TWO logics

One for expressing meanings:
formulae of first or higher order logic, single or multi sorted.

One for meaning assembly:
proofs in intuitionistic propositional logic, λ -terms expressing the well-
formedness of formulae.



	
  

A.2. Representing formulae within lambda calculus
— connectives

Assume that the base types are
e (individuals, often there is just one) and
t (propositions)

and that the only constants are
the logical ones (below) and
the relational and functional symbols of the specific logical

language (on the next slide).

Logical constants:

• ∼ of type t→ t (negation)

• ⊃,&,+ of type t→ (t→ t)
(implication, conjunction, disjunction)

• two constants ∀ and ∃ of type (e→ t)→ t



	
  

A.3. Representing formulae within lambda calculus
— language constants

The language constants for multi sorted First Order Logic:

• Rq of type e→ (e→ (....→ e→ t))

• fq of type e→ (e→ (....→ e→ e))

likes λxλy (likes y) x x : e, y : e, likes : e→ (e→ t)
<< likes >> is a two-place predicate

Garance λP (P Garance) P : e→ t, Garance : e
<< Garance >> is viewed as

the properties that << Garance >> holds



	
  

A.4. Normal terms of type t are formulae

Easy but important result

(induction on normal λ -terms preferably η-long):

1. normal λ -terms of type e with xk : e as only free variables are
logical terms with the same free variables

2. normal λ -terms (preferably η-long) of type t with xi : e as only
free variables are logical formulae with the same free variables
and bound variables.



	
  

A.5. Montague semantics. Syntax/semantics.

(Syntactic type)∗ = Semantic type
S∗ = t a sentence is a proposition

np∗ = e a noun phrase is an entity
n∗ = e→ t a noun is a subset of the set of en-

tities
(A\B)∗ = (B/A)∗ = A→ B extends easily to all syntactic cat-

egories of a Categorial Grammar
e.g. a Lambek CG



	
  

A.6. Montague semantics.
Algorithm

1. Replace in the lambda-term issued from the syntax the words by
the corresponding term of the lexicon.

2. Reduce the resulting λ -term of type t its normal form corre-
sponds to a formula, the ”meaning”.



	
  

A.7. Ingredients: a parse structure & a lexicon

Syntactical structure (some (club)) (defeated Leeds)

word semantic type u∗

semantics : λ -term of type u∗

xv the variable or constant x is of type v
some (e→ t)→ ((e→ t)→ t)

λPe→t λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(P x)(Q x))))
club e→ t

λxe(clube→t x)
defeated e→ (e→ t)

λy e λxe ((defeatede→(e→t) x)y)
Leeds e

Leeds



	
  

A.8. Computing the semantic representation

Put semantics terms into the parse structure & β reduce:

((
λPe→t λQe→t (∃(e→t)→t (λxe(∧(P x)(Q x))))

)(
λxe(clube→t x)

))((
λy e λxe ((defeatede→(e→t) x)y)

)
Leedse

)
↓ β(

λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(clube→t x)(Q x))))
)(

λxe ((defeatede→(e→t) x)Leedse)
)

↓ β(
∃(e→t)→t (λxe(∧(clube→t x)((defeatede→(e→t) x)Leedse)))

)
Usually human beings prefer to write it like this:

∃x : e (club(x) ∧ defeated(x ,Leeds))



	
  

A.9. Montague: good architecture / limits

Good trick (Church):

a propositional logic for meaning assembly (proofs/λ -terms)
to compute

formulae another logic with first order (formulae/meaning no
proofs)

The dictionary says ”barks” requires a subject of type ”animal”. How
could we block:

* The chair barked.

By type mismatch, (f A→X (uB)) hence many types are needed.

If we do not want too many operations, we need to factorise similar
operations acting on family of types and terms.



	
  

B ΛTyn: an instance of F for
semantics



	
  

B.1. System F

Types: Terms

• t (prop)

• many entity types ei

• type variables α ,β , ...

• Πα . T

• T1→ T2

• Constants and variables
for each type

• (f T→UaT ) : U

• (λxT . uU) : T → U

• t(Λα. T ){U} : T [U/α]

• Λα .uT : Πα .T — no free α

in a free variable of u.

The reduction is defined as follows:

• (Λα .τ){U} reduces to τ[U/α]
(remember that α and U are types).

• (λx .τ)u reduces to τ[u/x ] (usual reduction).



	
  

B.2. Unnecessary type operators

The following defined types have the same elimination and introduc-
tion behaviour.

(1) Product A∧B can be defined as
Πα . (A→ B → α)→ α

(2) Sum A∨B can be defined as
Πα . (A→ α)→ (B → α)→ α

(3) Existential quantification:
Σβ . ((Πα . (V [X ]→ β ))→ β )

(4) Inductive types (Church numerals, lists, trees, etc.)

A problem: encodings are unnatural. On going work: include prede-
fined types (e.g. Gödel’s integers of system T).



	
  

B.3. Basic facts on system F

We do not really need system F but any type system with quantifica-
tion offer types. F is syntactically the simplest.

Confluence and strong normalisation — requires the comprehension
axiom for all formulae of HA2. (Girard 1971)

A concrete categorical interpretation with coherence spaces that shows
that there are distinct functions from A to B .

Terms of type t with constants of mutisorted FOL (resp. HOL) corre-
spond to multisorted formulae of FOL (resp. HOL)



	
  

B.4. Examples of second order usefulness

Arbitrary modifiers: ΛαλxAyα f α→R .((readA→R→t x) (f y))

Polymorphic conjunction:

Given predicates Pα→t, Qβ→t over entities of respective types
α, β ,

given any type ξ with two morphisms from ξ to α, to β

we can coordinate the properties P ,Q of (the two images of)
an entity of type ξ :

The polymorphic conjunction &Π is defined as the term

&Π = ΛαΛβλPα→tλQβ→t

Λξ λxξ λ f ξ→αλgξ→β .
(andt→t→t (P (f x))(Q (g x)))



	
  

Figure 1: Polymorphic conjunction: P(f (x))&Q(g(x))
with x : ξ , f : ξ → α, g : ξ → β .



	
  

C System F based semantics and
pragmatics



	
  

C.1. Examples

(1) Dinner was delicious but took ages.
(event / food)

(2) * The salmon we had for lunch was lightning fast.
(animal / food)

(3) I carried the books from the shelf to the attic.
Indeed, I already read them all.
(phys. / info — think of possible multiple copies of a book)

(4) Liverpool is a big place and voted last Sunday.
(geographic / people)

(5) * Liverpool is a big place and won last Sunday.
(geographic / football club)



	
  

C.2. Principles of our lexicon

• Remain within realm of Montagovian compositional semantics
(for compositionality)

• Allow both predicate and argument to contribute lexical informa-
tion to the compound.

• Based on optional modifiers attached to words (as opposed to
derived from types).

• Integrate within existing discourse models (e.g. λ -DRT).



	
  

C.3. The Terms: principal or optional

A standard λ -term attached to the main sense:

• Used for compositional purposes

• Comprising detailed typing information

Some optional λ -terms (none is possible)

• Used, or not, for adaptation purposes

• Each associated with a constraint : rigid, ∅



	
  

C.4. RIGID vs FLEXIBLE use of optional terms

RIGID

Such a transformation is exclusive:

if is used, then the other associated with the same word are not used.

Each time we refer to the word it is with the same aspect.

FLEXIBLE

There is no constraint.

Any subset of the flexible transformation can be used:

different aspects of the words can be simultaneously used.



	
  

C.5. Standard behaviour

φ : physical objects

small stone

small︷ ︸︸ ︷
(λxϕ . (smallϕ→ϕx))

stone︷︸︸︷
τ

ϕ

(small τ)ϕ



	
  

C.6. Correct copredication

word principal λ -term optional λ -terms rigid/flexible
Liverpool liverpoolT IdT : T → T (F)

t1 : T → F (R)
t2 : T → P (F)
t3 : T → Pl (F)

is a big place big place : Pl → t
voted voted : P → t
won won : F → t

where the base types are defined as follows:

T town
F football club
P people
Pl place



	
  

C.7. Liverpool is a big place

Type mismatch:

big placePl→t(LiverpoolT ))

big place applies to “places” (type Pl) and not to “towns” (T )

Lexicon tT→Pl
3 turns a town (T ) into a place (Pl)

big placePl→t(tT→Pl
3 LiverpoolT ))

only one optional term, the (F)/ (R)difference is useless.



	
  

C.8. Liverpool is a big place and voted

Polymorphic AND yields: (&Π(big place)Pl→t(voted)P→t)

Forces α := Pl and β := P , the properly typed term is

&Π{Pl}{P}(is wide)Pl→t(voted)P→t

It reduces to:

Λξ λxξ
λ f ξ→α

λgξ→β (andt→t)→t (is wide (f x))(voted (g x)))

Syntax applies it to “Liverpool” so ξ := T yielding

λ f T→PlλgT→P(and (is wide (f LiverpoolT ))(voted (g LiverpoolT )))).

The two flexible optional λ -terms t2 : T → P and t3 : T → Pl yield

(and (is widePl → t (tT→Pl
3 LiverpoolT ))(votedPl→t (tT→P

2 LiverpoolT )))



	
  

C.9. Liverpool voted and won

As previously but with won instead of big place.

The term is:
λ f T→PlλgT→P(and (won (f LiverpoolT ))(voted (g LiverpoolT ))))

for “won”, we need to use the transformation t1 : T → F

but T1 is rigid, hence we cannot access to the other needed transfor-
mation into a “place”.



	
  

D Integrating other aspects



	
  

D.1. Quantifier: critics of the standard solution

Syntactical structure of the sentence 6= logical form.

(6) Keith played some Beatles songs.

(7) syntax (Keith (played (some (Beatles songs))))

(8) semantics: (some (Beatles songs)) (λx . Keith played x)

Asymmetry class / predicate

(9) Some politicians are crooks

(10) ? Some crooks are politicians

(11) ∃x . crook(x)&politician(x)



	
  

D.2. A solution: Hilbert’s epsilon

ε : Λα(α → t)→ α —- remember F (εxF )≡ ∃x . F (x).

Follows syntactical structure. General presupposition F (εxF ) is added.

Also solves the so-called E-type pronouns interpretation:

(12) A man came in. He sat dow.

(13) ”He” = ”Aman” = (εx M(x)).

For applying ε a type say cat, a type have predicative counterpart cat
(type) ĉat : e→ t. (if needed domains can be restrained / extended)



	
  

D.3. Other application in natural language semantics

Generalised quantifiers (most)

Plurals

Virtual traveller / fictive motion

Deverbals: “The signature of the contract took ages / is unreadable.”



	
  

D.4. On going work: adding coercive subtyping
(as Luo & Soloviev)

coercive application
f : A→ B u : A0 A0 < A

(f a) : B
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A < B C < D

B → A < C → D

A < B

X → A < X → B

A < B

B → X < A→ X
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S [X ] < T [X ]

ΠX .S [X ] < ΠX .T [X ]
U < T [X ]

no free X in U
U < ΠX .T [X ]

S [W ] < U

ΠX .S [X ] < U
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

U < ΠX .T [X ]
U < T [A]

ΠX .S [X ] < U

S [A] < U

On going work: transitivity of < is unnecessary (by induction on for-
mula degree, number of intermediate formulae with maximal degree,
depth of intermediate formulae of maximum degree)



	
  

E Conclusion



	
  

E.1. What we have seen so far

A general framework for

the logical syntax of compositional semantics
some lexical semantics/pragmatics phenomena

Guidelines:

Terms: semantics, instructions for computing references
Types: pragmatics, defined from the context
Idiosyncratic (language specific) transformations compati-

ble with the types but not forced by the types.

(14) Mon vélo est crevé. /??? My bike is flat.
(15) Classe→ room promotion 6→ room

Practically: implemented in Grail, Moot’s wide coverage categorial
parser, for fragment with a hand-typed semantic lexicon — but with
λ -DRT instead of HOL in lambda calculus.



	
  

E.2. Perspective

Pursue on coercive sub typing and predefined inductive types

What are the base types? Defined or acquired?

Linear types for more complex incompatibilities.

Can the optional modifiers be acquired, at least the specialisation
modifiers?

Cohabitation of types and formulae of first/higher order logic:

Typing (∼ presupposition) is irrefutable sleeps(x : cat)
Type to Formula: a type cat can be mirrored as a formula

that can be refuted cat : e→ t cat(x) : t
Formula to Type? Is any formula with a single free variable

a type? cat(x)∧belong(x , john)∧ sleeps(x):type? At least
it is not a natural comparison class.


