Determining order restrictions in recursive modification using compositionality in distributional semantics

Eva Maria Vecchi Roberto Zamparelli Marco Baroni

Center for Mind/Brain Sciences Unversity of Trento

MIXEUR 2013

Distributional semantics

Landauer and Dumais 1997, Turney and Pantel 2010, ...

he curtains open and the moon shining in on the barely ars and the cold , close moon " . And neither of the w rough the night with the moon shining so brightly , it made in the light of the moon . It all boils down , wr surely under a crescent moon , thrilled by ice-white sun, the seasons of the moon ? Home, alone, Jay pla m is dazzling snow, the moon has risen full and cold un and the temple of the moon , driving out of the hug in the dark and now the moon rises , full and amber a bird on the shape of the moon over the trees in front But I could n't see the moon or the stars, only the rning, with a sliver of moon hanging among the stars they love the sun, the moon and the stars. None of the light of an enormous moon . The plash of flowing w man 's first step on the moon ; various exhibits , aer the inevitable piece of moon rock . Housing The Airsh oud obscured part of the moon . The Allied guns behind

Distributional semantics

The geometry of meaning

Distributional Semantic Models (DSMs): Computational models of meaning based on their distribution: their pattern of cooccurrences within a specified context

• i.e., within a document, within a window of [content] words before and after, etc.

	shadow	shine	planet	night
moon	16	29	10	22
sun	15	45	14	10
dog	10	0	0	4

Distributional semantics

The geometry of meaning

Distributional Semantic Models (DSMs): Computational models of meaning based on their distribution: their pattern of cooccurrences within a specified context

• i.e., within a document, within a window of [content] words before and after, etc.

- semantic similarity approximated by geometric distance of vectors (angle)
- successful in tasks that concern content words: detecting synonyms, lexical entailment, ... (see Turney & Pantel, 2010; Baroni & Lenci, 2010)

Vecchi, Zamparelli and Baroni CIMeC-CLIC

Order in recursive modification

Mitchell and Lapata 2008, 2009, 2010

	planet	night	space	color	blood	brown
red	15.3	3.7	2.2	24.3	19.1	20.2
moon	24.3	15.2	20.1	3.0	1.2	0.5

Mitchell and Lapata 2008, 2009, 2010

	planet	night	space	color	blood	brown
red	15.3	3.7	2.2	24.3	19.1	20.2
moon	24.3	15.2	20.1	3.0	1.2	0.5
red moon	10.9	2.8	1.1	5.5	0.2	0.3

Mitchell and Lapata 2008, 2009, 2010

	planet	night	space	color	blood	brown
red	15.3	3.7	2.2	24.3	19.1	20.2
moon	24.3	15.2	20.1	3.0	1.2	0.5
red moon	10.9	2.8	1.1	5.5	0.2	0.3
red+moon	39.6	18.9	22.3	27.3	20.3	20.7
red*moon	371.8	56.2	44.2	72.9	22.9	10.1

1. Additive (add): $\vec{c} = \vec{a} + \vec{n}$

2. Weighted Additive (w.add): $\vec{c} = \alpha \vec{a} + \beta \vec{n}$

3. **Multiplicative** (*mult*):
$$\vec{c}_i = \vec{a}_i \vec{n}_i$$

4. **Dilation** (*dl*): $\vec{c} = (\vec{a} \cdot \vec{a})\vec{n} + (\lambda - 1)(\vec{a} \cdot \vec{n})\vec{a}$

Guevara 2010, Baroni and Zamparelli 2010

5. **Full Additive** (*f.add*): $\vec{c} = \mathbf{W}_1 \vec{a} + \mathbf{W}_2 \vec{n}$

6. Lexical Function Model (*lfm*):

$$\vec{c} = \mathbf{A}\vec{n}$$

$$\begin{pmatrix} c_1 \\ c_2 \\ \cdots \\ c_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mm} \end{pmatrix} \times \begin{pmatrix} n_1 \\ n_2 \\ \cdots \\ n_m \end{pmatrix}$$

• Success with adjective-noun (AN) phrases in a number of semantic tasks

- approximation of observed ANs (Baroni & Zamparelli, 2010; Guevara 2010, etc)
- distinguishing types of modification: intersective, subsective, intensional (Boleda et al., 2012)
- detecting semantic deviance in novel AN phrases (Vecchi et al., 2011, 2013)

[Recursive] Compositionality in DSMs

	planet	night	space	color	blood	brown
red	15.3	3.7	2.2	24.3	19.1	20.2
moon	24.3	15.2	20.1	3.0	1.2	0.5
red moon	10.9	2.8	1.1	5.5	0.2	0.3

[Recursive] Compositionality in DSMs

	planet	night	space	color	blood	brown
red	15.3	3.7	2.2	24.3	19.1	20.2
moon	24.3	15.2	20.1	3.0	1.2	0.5
red moon	10.9	2.8	1.1	5.5	0.2	0.3
big red moon	3.2	0.9	1.4	4.7	0.1	0.5

[Recursive] Compositionality in DSMs

1. Weighted Additive (w.add): $\vec{c} = \alpha \vec{a}_x + \beta (\alpha \vec{a}_y + \beta \vec{n})$

2. **Multiplicative** (*mult*):
$$\vec{c}_i = \vec{a}_{xi}\vec{a}_{yi}\vec{n}_i$$

- 3. Full Additive (*f.add*): $\vec{c} = \mathbf{W}_1 \vec{a}_x + \mathbf{W}_1 (\mathbf{W}_1 \vec{a}_y + \mathbf{W}_2 \vec{n})$
- 4. Lexical Function Model (*lfm*): $\vec{c} = \mathbf{A}_x \mathbf{A}_y \vec{n}$

Recursive adjective modification

Flexible Order (FO)

• phrases where both orders, $A_x A_y N$ and $A_y A_x N$, are frequently attested

estimated total population overall good health total estimated population good overall health

Rigid Order (RO)

• phrases with *one* order, $A_x A_y N$, frequently attested, and $A_y A_x N$ is unattested.

ancient human remains fine young musician **human ancient remains *young fine musician*

Unattested Order (UO)

• phrases in which *neither* order, $A_x A_y N$ or $A_y A_x N$, is attested

*significant historic year *thin correct material *historic significant year *correct thin material

Motivation

Compositional Distributional Semantics

- How distributional composition functions behave when applied recursively
- Can we use measures extracted from the semantic space to distinguish or even predict adjective ordering?
- Particul Linguistics
 - Can distributional methods shed some light on the ways in which adjective ordering is constrained in modification?

Interpretending NLP Tasks

- · determine plausibility of possible parses of recursive phrases
- suggest the optimal ordering in NLG
- provide insight to the cognitive processing of phrases
- · opens doors between distributional semantics and syntax

1. Semantic Space

Source Corpus

- about 2.8 billion tokens
 - Web-derived ukWaC corpus (http://wacky.sslmit.unibo.it)
 - a mid-2009 dump of the English Wikipedia (http://en.wikipedia.org)
 - British National Corpus (http://www.natcorp.ox.ac.uk/)
- tokenized, POS-tagged and lemmatized with the TreeTagger (Schmid 1995)
- co-occurrence statistics extracted at the lemma level, no inflectional information

1. Semantic Space

Source Corpus

- about 2.8 billion tokens
 - Web-derived ukWaC corpus (http://wacky.sslmit.unibo.it)
 - a mid-2009 dump of the English Wikipedia (http://en.wikipedia.org)
 - British National Corpus (http://www.natcorp.ox.ac.uk/)
- tokenized, POS-tagged and lemmatized with the TreeTagger (Schmid 1995)
- co-occurrence statistics extracted at the lemma level, no inflectional information

Semantic Space Matrix

- Rows:
 - 8K most frequent Nouns
 - 4K most frequent Adjectives
 - 179K ANs with frequency > 100 in source corpus
- Contexts:
 - 10K most frequently co-occurring Adjectives, Nouns, Verbs, and Adverbs
 - transform raw counts into Positive Pointwise Mutual Information scores
 - reduce to 300 dimensions by Non-negative Matrix Factorization (NMF)

2. Evaluation materials

Adjective-Adjective-Noun (AAN) Phrases

- Generate AANs composed of the 700 most frequently As and the 2.5K most frequent Ns
- Split the AANs into the two types of adjective ordering: FO and RO
- Observed vectors (obs) are computed for the FO and attested RO AANs

Gold Standard

- 320 AANs with "good" obs vectors
- selected after a qualitative analysis of the nearest neighbors (CrowdFlower experiment)

3. Approach to vector analysis

- **Top neighbors**: A qualitative analysis of the top neighbors in the semantic space of the *obs* and predicted AAN vectors
- **Observed vector approximation**: The distance between a predicted AAN vector and its corpus-extracted observed vector
- **Distance from subparts**: The distance relationship between the AAN vectors and each of its subparts. We consider the distance between the AAN vector and
 - the component N vector
 - the component A vectors (obs/add) or AN centroids (lfm)
 - the component AN vectors

1. Top neighbors

medieval old town	British naval power
fascinating town	naval war
impressive cathedral	British navy
medieval street	naval power
rural poor people	contemporary political issue
poor rural people	cultural topic
rural infrastructure	contemporary debate
rural people	contemporary politics
friendly helpful staff	rapid social change
near hotel	social conflict
helpful staff	social transition
quick service	cultural consequence
national daily newspaper	fresh organic vegetable
national newspaper	organic vegetable
major newspaper	organic fruit
daily newspaper	organic product
creative new idea	last live performance
innovative effort	final gig
creative design	live dvd
dynamic part	live release

Examples of top neighbors of the gold standard, both FO (left column) and RO (right column) AANs.

2. Vector Approximation

	Gold	FO	RO	sig.
W.ADD	0.565	0.572	0.558	
F.ADD	0.618	0.622	0.614	
MULT	0.424	0.468	0.384	*
LFM	0.655	0.675	0.637	*

Mean distances between the corpus-extracted and model-generated gold AAN vectors. Based on the results of a *t*-test comparing the means of the two classes of ordering, for all significant results, p < 0.001.

3. Distance from subparts

	Measure	FO_{mean}	<i>RO_{mean}</i>	sig.
	$\cos A_x$	0.342	0.298	*
	$\cos A_y$	0.353	0.438	*
0.0.0	cosN	0.555	0.457	*
OB2	$\cos A_x N$	0.752	0.661	*
	cosA _y N	0.748	0.724	

Results of a *t*.test for corpus-extracted vectors for the gold items. For all significant results, *p*<0.05.

> FO: *rural poor people* RO: *rapid social change*

3. Distance from subparts

	Measure	FO_{mean}	<i>RO_{mean}</i>	sig.
	$\cos A_x$	0.342	0.298	*
	$\cos A_y$	0.353	0.438	*
0.0.0	cosN	0.555	0.457	*
OB2	$\cos A_x N$	0.752	0.661	*
	cosA _y N	0.748	0.724	

Results of a *t*.test for corpus-extracted vectors for the gold items. For all significant results, *p*<0.05.

> FO: *rural poor people* RO: *rapid social change*

3. Distance from subparts

	Measure	FO_{mean}	<i>RO_{mean}</i>	sig.
	$\cos A_x$	0.342	0.298	*
	$\cos A_y$	0.353	0.438	*
0.0.0	cosN	0.555	0.457	*
OB2	$\cos A_x N$	0.752	0.661	*
	cosA _y N	0.748	0.724	

Results of a *t*.test for corpus-extracted vectors for the gold items. For all significant results, *p*<0.05.

> FO: *rural poor people* RO: *rapid social change*

3. Composition models: FO vs RO

	Measure	Estimate	sig	
	$\cos A_x$	-11.142	*	FO>RO
	$\cos A_y$	-0.503		
W.ADD	cosN	-4.210	*	FO>RO
	$\cos A_x N$	1.357		
	$\cos A_y N$	0.475		
	$\cos A_x$	-8.259	*	FO>RO
	$\cos A_y$	2.126		
F.ADD	cosN	-8.029	*	FO>RO
	$\cos A_x N$	18.140	*	RO>FO
	$\cos A_y N$	-8.496	*	FO>RO
	$\cos A_x$	-3.011	*	FO>RO
	$\cos A_y$	2.328	*	RO>FO
MULT	cosN	-3.538	*	FO>RO
	$\cos A_x N$	-0.149		
	$\cos A_y N$	-1.940		
	$\cos A_x$	-6.148	*	FO>RO
	$\cos A_y$	1.988		
LFM	cosN	-7.272	*	FO>RO
	$\cos A_x N$	0.670		
	cosA _y N	-4.142		

Attested-order RO:rapidsocialchangeUnattested-order RO:socialrapidchange

3. Composition models: Predicting the correct order

	Measure	Estimate	sig.	
W.ADD	$\cos A_x$	12.297	*	U>RO
	$\cos A_y$	-8.650	*	RO>U
	cosN	-0.343		
	$\cos A_x N$	10.740	*	U>RO
	$\cos A_y N$	-5.418		
F.ADD	$\cos A_x$	17.497	*	U>RO
	$\cos A_y$	-9.558	*	RO>U
	cosN	0.646		
	$\cos A_x N$	-8.525	*	RO>U
	$\cos A_y N$	6.884		U>RO
MULT	$\cos A_x$	5.966	*	U>RO
	$\cos A_y$	-5.573	*	RO>U
	cosN	-0.624		
	$\cos A_x N$	-2.603		
	$\cos A_y N$	3.701	*	U>RO
LFM	$\cos A_x$	22.802	*	U>RO
	$\cos A_y$	-6.916	*	RO>U
	cosN	6.559	*	U>RO
	$\cos A_x N$	5.739		
	cosA _y N	-0.596		

• Corpus-extracted AAN vectors appear to be meaningful, semantically coherent objects

- Composition functions are able to approximate corpus-extracted AANs quite well
- The distance relationship between the AANs and their subparts provides a clear, significant distinction between FO and RO phrases
- Composition models are able to capture the distinction between attested vs. unattested RO AANs
- Given two adjectives and a noun, at random, we can exploit these unsupervised measures to determine the correct adjective ordering

- A more extensive qualitative analysis of the neighborhoods of the model-generated AAN phrases
 - e.g., compare the nearest neighbors between the attested- and unattested-order RO AANs to determine if there is a qualitative difference between the two
- Compare these measures also for unattested AANs
- Classify types of adjectives and nouns which are found in each ordering and determine if a pattern exists
 - exploit it to improve prediction of adjective ordering.
- *** Can we use these measures (+ plausibility measures¹) to improve bracketing of NPs?

¹Vecchi et al., 2011, 2013

That's all, folks!

http://evavecchi.com