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Standard Sturmian words

Definition: An infinite word w over {a, b} is called
standard Sturmian if and only if there exists a
sequence (dn)n≥1 of integers such that d1 ≥ 0, dk ≥ 1
for k ≥ 2 and

w = lim
n→∞

sn

where s−1 = b, s0 = a, sn = sdn

n−1
sn−2 for n ≥ 1.
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Standard Sturmian words

Definition: An infinite word w over {a, b} is called
standard Sturmian if and only if there exists a
sequence (dn)n≥1 of integers such that d1 ≥ 0, dk ≥ 1
for k ≥ 2 and

w = lim
n→∞

sn

where s−1 = b, s0 = a, sn = sdn

n−1
sn−2 for n ≥ 1.

Notation: w((dn)n≥1)
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Standard Sturmian words

Definition: An infinite word w over {a, b} is called
standard Sturmian if and only if there exists a
sequence (dn)n≥1 of integers such that d1 ≥ 0, dk ≥ 1
for k ≥ 2 and

w = lim
n→∞

sn

where s−1 = b, s0 = a, sn = sdn

n−1
sn−2 for n ≥ 1.

Notation: w((dn)n≥1)

Example: w((1)n≥1) is the Fibonacci word.
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Standard Sturmian words

Definition: An infinite word w over {a, b} is called
standard Sturmian if and only if there exists a
sequence (dn)n≥1 of integers such that d1 ≥ 0, dk ≥ 1
for k ≥ 2 and

w = lim
n→∞

sn

where s−1 = b, s0 = a, sn = sdn

n−1
sn−2 for n ≥ 1.

Notation: w((dn)n≥1)

Example: w((1)n≥1) is the Fibonacci word.

Example: w((2)n≥1) : sn = sn−1sn−1sn−2
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Standard Sturmian words

Definition: An infinite word w over {a, b} is called
standard Sturmian if and only if there exists a
sequence (dn)n≥1 of integers such that d1 ≥ 0, dk ≥ 1
for k ≥ 2 and

w = lim
n→∞

sn

where s−1 = b, s0 = a, sn = sdn

n−1
sn−2 for n ≥ 1.

Notation: w((dn)n≥1)

Example: w((1)n≥1) is the Fibonacci word.

Example: w((2)n≥1) : sn = sn−1sn−1sn−2

s1 = aab
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Standard Sturmian words

Definition: An infinite word w over {a, b} is called
standard Sturmian if and only if there exists a
sequence (dn)n≥1 of integers such that d1 ≥ 0, dk ≥ 1
for k ≥ 2 and

w = lim
n→∞

sn

where s−1 = b, s0 = a, sn = sdn

n−1
sn−2 for n ≥ 1.

Notation: w((dn)n≥1)

Example: w((1)n≥1) is the Fibonacci word.

Example: w((2)n≥1) : sn = sn−1sn−1sn−2

s1 = aab

s2 = aabaaba
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Standard Sturmian words

Definition: An infinite word w over {a, b} is called
standard Sturmian if and only if there exists a
sequence (dn)n≥1 of integers such that d1 ≥ 0, dk ≥ 1
for k ≥ 2 and

w = lim
n→∞

sn

where s−1 = b, s0 = a, sn = sdn

n−1
sn−2 for n ≥ 1.

Notation: w((dn)n≥1)

Example: w((1)n≥1) is the Fibonacci word.

Example: w((2)n≥1) : sn = sn−1sn−1sn−2

s1 = aab

s2 = aabaaba

s3 = aabaabaaabaabaaab
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Standard Sturmian words

Definition: An infinite word w over {a, b} is called
standard Sturmian if and only if there exists a
sequence (dn)n≥1 of integers such that d1 ≥ 0, dk ≥ 1
for k ≥ 2 and

w = lim
n→∞

sn

where s−1 = b, s0 = a, sn = sdn

n−1
sn−2 for n ≥ 1.

Notation: w((dn)n≥1)

Example: w((1)n≥1) is the Fibonacci word.

Example: w((2)n≥1) : sn = sn−1sn−1sn−2

s1 = aab

s2 = aabaaba

s3 = aabaabaaabaabaaab

s4 = aabaabaaabaabaaabaabaabaaabaabaaabaabaaba
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Standard Sturmian words

Definition: An infinite word w over {a, b} is called
standard Sturmian if and only if there exists a
sequence (dn)n≥1 of integers such that d1 ≥ 0, dk ≥ 1
for k ≥ 2 and

w = lim
n→∞

sn

where s−1 = b, s0 = a, sn = sdn

n−1
sn−2 for n ≥ 1.

Notation: w((dn)n≥1)

Example: w((1)n≥1) is the Fibonacci word.

General remark:
for n ≥ 1, s2n ends with a.

Notation: s2na−1 = s2n without its last a
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Decomposition in Lyndon words

Lyndon word: word strictly smaller than all its suffixes
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Decomposition in Lyndon words

Lyndon word: word strictly smaller than all its suffixes

Siromoney et al. (1994): any infinite word can be
decomposed uniquely as a nonincreasing (with respect
to the lexicographic order �) product of Lyndon words
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Decomposition in Lyndon words

Lyndon word: word strictly smaller than all its suffixes

Siromoney et al. (1994): any infinite word can be
decomposed uniquely as a nonincreasing (with respect
to the lexicographic order �) product of Lyndon words

Melançon (2000): decomposition of standard Sturmian
words

w((dn)n≥1) =
∏

n≥0
`n

d2n+1

where for n ≥ 0, `n = as
d2n+1−1

2n
s2n−1s2na−1

`n is a Lyndon word (for any n ≥ 0)
`n−1 � `n (for any n ≥ 0)
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Decomposition in Lyndon words

Melançon (2000): decomposition of standard Sturmian
words

w((dn)n≥1) =
∏

n≥0
`n

d2n+1

where for n ≥ 0, `n = as
d2n+1−1

2n
s2n−1s2na−1

`n is a Lyndon word (for any n ≥ 0)
`n−1 � `n (for any n ≥ 0)

Example:
w((2)n≥1) =
aabaabaaabaabaaabaabaabaaabaabaaabaabaaba . . .
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Decomposition in Lyndon words

Melançon (2000): decomposition of standard Sturmian
words

w((dn)n≥1) =
∏

n≥0
`n

d2n+1

where for n ≥ 0, `n = as
d2n+1−1

2n
s2n−1s2na−1

`n is a Lyndon word (for any n ≥ 0)
`n−1 � `n (for any n ≥ 0)

Example:
w((2)n≥1) =
aabaabaaabaabaaabaabaabaaabaabaaabaabaaba . . .

s−1 = b

s0 = a `0 = asd1−1

0
s−1s0a

−1 = aabaa−1 = aab
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Decomposition in Lyndon words

Melançon (2000): decomposition of standard Sturmian
words

w((dn)n≥1) =
∏

n≥0
`n

d2n+1

where for n ≥ 0, `n = as
d2n+1−1

2n
s2n−1s2na−1

`n is a Lyndon word (for any n ≥ 0)
`n−1 � `n (for any n ≥ 0)

Example:
w((2)n≥1) =
aab|aab|aaabaabaaabaabaabaaabaabaaabaabaaba . . .

s−1 = b

s0 = a `0 = asd1−1

0
s−1s0a

−1 = aabaa−1 = aab
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Decomposition in Lyndon words

Melançon (2000): decomposition of standard Sturmian
words

w((dn)n≥1) =
∏

n≥0
`n

d2n+1

where for n ≥ 0, `n = as
d2n+1−1

2n
s2n−1s2na−1

`n is a Lyndon word (for any n ≥ 0)
`n−1 � `n (for any n ≥ 0)

Example:
w((2)n≥1) =
aab|aab|aaabaabaaabaabaabaaabaabaaabaabaaba . . .

s−1 = b

s0 = a `0 = asd1−1

0
s−1s0a

−1 = aabaa−1 = aab

s1 = aab

s2 = aabaaba `1 = as2s1s2a
−1 = aaabaabaaabaabaab
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Decomposition in Lyndon words

Melançon (2000): decomposition of standard Sturmian
words

w((dn)n≥1) =
∏

n≥0
`n

d2n+1

where for n ≥ 0, `n = as
d2n+1−1

2n
s2n−1s2na−1

`n is a Lyndon word (for any n ≥ 0)
`n−1 � `n (for any n ≥ 0)

Example:
w((2)n≥1) =
aab|aab|aaabaabaaabaabaab|aaabaabaaabaabaab|a . . .

s−1 = b

s0 = a `0 = asd1−1

0
s−1s0a

−1 = aabaa−1 = aab

s1 = aab

s2 = aabaaba `1 = as2s1s2a
−1 = aaabaabaaabaabaab
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Decomposition in Lyndon words

Example:
w((2)n≥1) =
aab|aab|aaabaabaaabaabaab|aaabaabaaabaabaab|a . . .

s−1 = b

s0 = a `0 = asd1−1

0
s−1s0a

−1 = aabaa−1 = aab

s1 = aab

s2 = aabaaba `1 = as2s1s2a
−1 = aaabaabaaabaabaab

Remark on the example (Melançon 2000):
for any n ≥ 1, `n = f(`n−1)

where f :

{

a 7→ aaabaab

b 7→ aab
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Melançon’s question (2000)

When is the sequence (`n)n≥0 morphic?
that is
When does there exist a morphism f such that for all
n ≥ 1, `n = f(`n−1)?
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Melançon’s question (2000)

When is the sequence (`n)n≥0 morphic?
that is
When does there exist a morphism f such that for all
n ≥ 1, `n = f(`n−1)?

Remark (still Melançon (2000)):
Such a morphism exists when the sequence (dn)n≥1 is
constant.
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Sturmian morphisms

Sturmian morphisms: elements of {La, Lb, Ra, Rb, E}∗

La :

{

a 7→ a

b 7→ ab
Lb :

{

a 7→ ba

b 7→ b
E :

{

a 7→ b

b 7→ a

Ra :

{

a 7→ a

b 7→ ba
Rb :

{

a 7→ ab

b 7→ b
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Sturmian morphisms

Sturmian morphisms: elements of {La, Lb, Ra, Rb, E}∗

La :

{

a 7→ a

b 7→ ab
Lb :

{

a 7→ ba

b 7→ b
E :

{

a 7→ b

b 7→ a

Ra :

{

a 7→ a

b 7→ ba
Rb :

{

a 7→ ab

b 7→ b

Remark (See Berstel, Séébold in Lothaire II):

for any n ≥ 0,

{

s2n = fn(a)

s2n−1 = fn(b)

where fn = Ld1

a Ld2

b
. . . L

d2n−1

a Ld2n

b
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Sturmian morphisms

Sturmian morphisms: elements of {La, Lb, Ra, Rb, E}∗

La :

{

a 7→ a

b 7→ ab
Lb :

{

a 7→ ba

b 7→ b
E :

{

a 7→ b

b 7→ a

Ra :

{

a 7→ a

b 7→ ba
Rb :

{

a 7→ ab

b 7→ b

Remark (See Berstel, Séébold in Lothaire II):

for any n ≥ 0,

{

s2n = fn(a)

s2n−1 = fn(b)

where fn = Ld1

a Ld2

b
. . . L

d2n−1

a Ld2n

b

Example: w((2)n≥1) : fn = (LaLaLbLb)
n
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Sturmian morphisms

Sturmian morphisms: elements of {La, Lb, Ra, Rb, E}∗

La :

{

a 7→ a

b 7→ ab
Lb :

{

a 7→ ba

b 7→ b
E :

{

a 7→ b

b 7→ a

Ra :

{

a 7→ a

b 7→ ba
Rb :

{

a 7→ ab

b 7→ b

Remark (See Berstel, Séébold in Lothaire II):

for any n ≥ 0,

{

s2n = fn(a)

s2n−1 = fn(b)

where fn = Ld1

a Ld2

b
. . . L

d2n−1

a Ld2n

b

Remark: `na = as
d2n+1−1

2n
s2n−1s2n = afn(ad2n+1−1ba)
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Strong conjugacy

Definition: two morphisms f and g are said
u-conjugated for a word u if for all words x,

f(x)u= ug(x)
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Strong conjugacy

Definition: two morphisms f and g are said
u-conjugated for a word u if for all words x,

f(x)u= ug(x)

LaLb :

{

a 7→ aba

b 7→ ab
and RaLb :

{

a 7→ baa

b 7→ ba

are a-conjugated
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Strong conjugacy

Definition: two morphisms f and g are said
u-conjugated for a word u if for all words x,

f(x)u= ug(x)

LaLb :

{

a 7→ aba

b 7→ ab
and RaLb :

{

a 7→ baa

b 7→ ba

are a-conjugated

f and g are strongly u-conjugated if moreover
f(a) = ua and g(a) = au
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Strong conjugacy

Definition: two morphisms f and g are said
u-conjugated for a word u if for all words x,

f(x)u= ug(x)

LaLb :

{

a 7→ aba

b 7→ ab
and RaLb :

{

a 7→ baa

b 7→ ba

are a-conjugated (but not strongly conjugated)

f and g are strongly u-conjugated if moreover
f(a) = ua and g(a) = au

LaLb :

{

a 7→ aba

b 7→ ab
and LaRb :

{

a 7→ aab

b 7→ ab

are strongly ab-conjugated
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Strong conjugacy

Definition: two morphisms f and g are said
u-conjugated for a word u if for all words x,

f(x)u= ug(x)

f and g are strongly u-conjugated if moreover
f(a) = ua and g(a) = au

LaLb :

{

a 7→ aba

b 7→ ab
and LaRb :

{

a 7→ aab

b 7→ ab

are strongly ab-conjugated

fn = Ld1

a Ld2

b
. . . L

d2n−1

a Ld2n

b
is strongly conjugated to

gn = Ld1

a Rd2

b
. . . L

d2n−1

a Rd2n

b
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Key result

For all n ≥ 0,

`n = gn(ad2n+1b) = gnLd2n+1

a (b)
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Key result

For all n ≥ 0,

`n = gn(ad2n+1b) = gnLd2n+1

a (b)

Proof:
`na = afn(ad2n+1ba) already seen

= afn(ad2n+1b)una un | fn(a) = una

= aungn(ad2n+1b)a fn et gn un-conjugated
= gn(ad2n+1b)a gn(a) = aun
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Key result

For all n ≥ 0,

`n = gn(ad2n+1b) = gnLd2n+1

a (b)

Proof:
`na = afn(ad2n+1ba) already seen

= afn(ad2n+1b)una un | fn(a) = una

= aungn(ad2n+1b)a fn et gn un-conjugated
= gn(ad2n+1b)a gn(a) = aun

Remark. A direct proof that: `n is a Lyndon word.
Since gnL

d2n+1

a preserves Lyndon word (Richomme 2003)
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Key result

For all n ≥ 0,

`n = gn(ad2n+1b) = gnLd2n+1

a (b)

Proof:
`na = afn(ad2n+1ba) already seen

= afn(ad2n+1b)una un | fn(a) = una

= aungn(ad2n+1b)a fn et gn un-conjugated
= gn(ad2n+1b)a gn(a) = aun

Remark. A direct proof that: `n is a Lyndon word.
Since gnL

d2n+1

a preserves Lyndon word (Richomme 2003)

Remark. A direct proof that: `n � `n−1.
Since gn preserves the lexicographic order (Richomme 2003)
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Answer to Melançon’s question

There exists a morphism f such that
for all n ≥ 1, `n = f(`n−1)

if and only if one of the two following cases hold

Case 1.

{

1 ≤ d1 ≤ d3

(dn)n≥1 = (d1, d2, d3, d2, d3, . . .)

In this case

{

`0 = ad1b

f = Ld1

a Rd2

b
Ld3−d1

a

Case 2.

{

d1 = 0, 1 ≤ d2 ≤ d4

(dn)n≥1 = (0, d2, d3, d4, d3, d4, . . .)

In this case

{

`0 = b

f = Rd2

b
Ld3

a Rd4−d2

b

Words 2005 - Conjugacy of morphisms and Lyndon decomposition of standard Sturmian words – p.9/11



Another consequence of Strong conjugacy

Strong conjugacy between fn and gn implies:
afn(a) = gn(a)a
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Another consequence of Strong conjugacy

Strong conjugacy between fn and gn implies:
afn(a) = gn(a)a

Hence
aw((dn)n≥1) = a limn→∞ fn(a) = limn→∞ gn(a)
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Another consequence of Strong conjugacy

Strong conjugacy between fn and gn implies:
afn(a) = gn(a)a

Hence
aw((dn)n≥1) = a limn→∞ fn(a) = limn→∞ gn(a)

But gn preserves Lyndon word (Richomme 2003)
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Another consequence of Strong conjugacy

Strong conjugacy between fn and gn implies:
afn(a) = gn(a)a

Hence
aw((dn)n≥1) = a limn→∞ fn(a) = limn→∞ gn(a)

But gn preserves Lyndon word (Richomme 2003)

So the word aw((dn)n≥1) has an infinity of prefixes that
are Lyndon words: it is an infinite Lyndon word.
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Another consequence of Strong conjugacy

Strong conjugacy between fn and gn implies:
afn(a) = gn(a)a

Hence
aw((dn)n≥1) = a limn→∞ fn(a) = limn→∞ gn(a)

But gn preserves Lyndon word (Richomme 2003)

So the word aw((dn)n≥1) has an infinity of prefixes that
are Lyndon words: it is an infinite Lyndon word.

This proves a result of Borel and Laubie (1993)
For any standard Sturmian word w,

aw is an infinite Lyndon word
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Conclusion

This work shows the interest of conjugacy of
morphisms (and morphisms preserving Lyndon words)
to study problems concerning Sturmian words (and
their relations with Lyndon words).
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Conclusion

This work shows the interest of conjugacy of
morphisms (and morphisms preserving Lyndon words)
to study problems concerning Sturmian words (and
their relations with Lyndon words).

Further work: for any Sturmian word, using its
decomposition over Sturmian morphisms, we are
looking for its decomposition in Lyndon words.
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Conclusion

This work shows the interest of conjugacy of
morphisms (and morphisms preserving Lyndon words)
to study problems concerning Sturmian words (and
their relations with Lyndon words).

Further work: for any Sturmian word, using its
decomposition over Sturmian morphisms, we are
looking for its decomposition in Lyndon words.

Remark: recently, with F. Levé, we have obtained a
characterization of the Sturmian words that are infinite
Lyndon words : they are the non-quasiperiodic
Sturmian words.
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