
Approximate Common Intervals in Multiple
Genome Comparison

Annie Chateau, Pierre Riou, Eric Rivals
LIRMM, UMR 5506 CNRS, Université Montpellier 2, Montpellier, France

{annie.chateau, pierre.riou, eric.rivals}@lirmm.fr

Abstract—We consider the problem of inferring approx-
imate common intervals of multiple genomes. Genomes
are modelled as sequences of homologous genes families
identifiers, and approximate common intervals represent
conserved regions possibly showing rearrangements, as well
as repetitions, and insertions/deletions. This problem is
already known, but existing approaches are not incremental
and somehow limited to special cases. We adopt a simple,
classical graph-based approach, where the vertices of
the graph represent the exact common intervals of the
sequences (i.e., regions containing the same gene set), and
where edges link vertices that differ by less than δ elements
(with δ being parameter). For a proof of concept, we
applied the method to several datasets of bacterial genomes,
compared the two maximal cliques algorithms, a static and
a dynamic one, and investigated the biological relevance
of a connected component found in Escherichia. While
being quite flexible, this approach opens the way to a
combinatorial characterization of genomic rearrangements
in terms of graph substructures.

INTRODUCTION

Comparative genomics at the genes order level aims at
studying genomes relationships from a global viewpoint
to explain either their rearrangement history during evo-
lution, or the actual similarities and differences between
species, strains or even individuals. Previous works,
which represented genomes as ordered list of genes,
have brought evidences that conserved gene clusters
are biologically relevant [9], [6], e.g. for inferring gene
functions.

Here, we focus on the comparison of closely related
species to infer shared genes clusters called approximate
common intervals. This study is in the line of previ-
ous works that considered simpler cases. The simplest
case consists in computing common intervals between
two signed permutations. An efficient algorithm was
proposed by Uno and Yagiura in [13]. Since then, a
lot of papers have been published on the same model
of permutations, with varying or generalizing contexts.
A complete survey of these works is proposed in [4],
These methods are efficient, however they neglect gene
insertions/deletions or repetitions, which are known to
occur in genomes. Modeling genomes by sequences,

rather than by permutations, was proposed in [3]. First
algorithms that find common intervals carrying the same
gene set have been exhibited in [11], thereby accounting
for differences in terms of repeats. Then more complex
methods were designed for finding approximate common
clusters, but these are dedicated to a specific distance
between gene sets [2], [5], [1].

Our aim is two-fold: first to investigate a general,
graph-based approach that accommodates any notion
of distance and offers incremental computation, sec-
ond to provide a proof of concept by showing that it
can be applied to bacterial genome comparisons, and
that at least some of the clusters found are biologi-
cally meaningful. Rather than directly computing the
approximate common intervals, we first build a graph in
which cliques represent approximate common intervals
(a classical framework that has not yet been applied
in this context, to our knowledge). This graph is an
interesting, combinatorial object per se: cliques, as well
as connected components, and maybe other structures
may reveal evolutionary information. Moreover, clique
computation is a sub-problem in our framework, which
is delegated to dedicated algorithms, for the sake of
modularity. We compared two alternative solutions: a
dynamic one, which allows to add a new genome to
an existing comparison, and a static one, which proves
relatively efficient on graphs obtained with bacterial
genomes.

In Section I, we present useful definitions and state
the problem. Section II describes the algorithms for
computing the graph, In Section III, we present an
overview of the results obtained on bacterial datasets.

I. DEFINITIONS

Genomes are modelled by sequences of integers rep-
resenting families of homologous DNA sequences, basi-
cally genes but it could also be any markers of interest.
We suppose that the families are given a priori. We use
a linear model, but the circular case can be addressed by
the same techniques and definitions.

In what follows, S1, . . . , Sk are k sequences over an
alphabet Σ of finite size σ, and n is the maximal length
of these sequences. For a sequence w of size |w|, we
denote by w[i] the ith element of w, and w[a, b] the
substring of w between positions a and b.

Definition 1 (Character set): Given a sequence w of
size |w|, its character set C(w) is defined by C(w) =
{w[i] : 1 ≤ i ≤ |w|}.

Definition 2 (Left- and right-maximality): Let w be
sequence. A substring w[a, b] of w is left-maximal (resp.
right-maximal) with respect to w, if a = 1 or a > 1 and
w[a − 1] /∈ C(w[a, b]) (resp. b = |w| or b < |w| and
w[b+1] /∈ C(w[a, b])). The substring w[a, b] is maximal,
if it is left-maximal and right-maximal.

Definition 3 (Location): A location of a set of char-
acters C on a sequence w is an interval [a, b] such that
C(w[a, b]) = C.

A. Approximate common interval

Definition 4 (Exact common interval of p sequences):
A common interval of p sequences is a set E of
substrings from p ≤ k sequences among S1, ..., Sk such
that for all the pairs (w1, w2) ∈ E2, C(w1) = C(w2). A
common interval is maximal if it contains only maximal
substrings.

In all what follows, we only consider maximal com-
mon intervals.

To introduce a notion of approximation, we have
to define a distance between character sets. A pos-
sible choice for the distance d is the maximum set-
distance defined for two sets A and B by: d(A,B) =
max{|A\B|, |B\A|}. The main advantage of this dis-
tance is that it is less constraining than the symmetric
difference. Therefore it is interesting if we want to
limit it to little values because it may allow us to find
substitions in the sequences. This distance will be used in
the experimental part, but the definitions and algorithms
work with any kind of distance between sets.

Definition 5 (Approximate common interval): Given
an integer δ > 0, a δ-approximate common interval
of p sequences is a set E of substrings from p ≤ k
sequences among S1, ..., Sk such that for all the pairs
(w1, w2) ∈ E2, d(C(w1), C(w2)) < δ.

An approximate common interval is a set of regions of
several genomes that have similar gene content. Biolog-
ically, it may be synteny regions or co-expressed genes.
Remark that for δ = 1, the approximate common inter-
vals are exactly the common intervals and the locations
may contain internal rearrangements, repetitions, as well
as insertions/deletions.

The algorithm presented in Section II intends to detect
the approximate common intervals. To prevent from

considering a lot of biologically irrelevant cases, we
introduce two additional parameters in our problem,
which are:

• s is the minimum size of considered character
sets, eliminating substrings with non-intersecting
character sets;

• q indicates the minimum number of sequences that
must be concerned by the locations of a given
character set.

Then, we generalize the problem to: Given s, δ and
q three integers, and a set-distance d, list all sets E
of maximal substrings of size at least s on at least
q sequences between S1, ..., Sk such that for all pair
(w1, w2) ∈ E2, d(C(w1), C(w2)) < δ.

B. The δ-graph

Definition 6 (δ-graph): Given an integer δ, a mini-
mum character set size s, a quorum parameter q and
a set-distance d, the δ-graph of k sequences is the graph
whose vertices are the character sets corresponding to
substrings of size at least s that are located on at least
q genomes. An edge links two vertices A and B if
d(A,B) < δ.

Note that, if q = 1, the approximate common intervals
are the cliques of this graph. If q > 1, then we do not find
all the approximate common intervals of the sequences.

Definition 7 (Connected cluster): Given k sequences
S1, ..., Sk, and three integers s, q and δ, a connected
cluster of these sequences is a set E of substrings from
S1, ..., Sk such that the set {C(w) : w ∈ E} is a
connected component of the δ-graph of S1, ..., Sk.

This notion enlarges the notion of clique, and it may
prove biologically relevant. At the connected cluster
level, we can for instance analyse rearrangement events.

II. METHOD

Each genome is represented as an ordered list of its
genes. To account for unequal gene content and duplica-
tions, we chose to identify each gene by the Hogenom
gene family [10] it belongs to. Our system first extracts
the genome representations from Hogenom files, builds
the δ-graph for the k genomes, computes its cliques
and maximal connected components (CC), then allows
a general visualisation of the entire graph or detailed
view of its CC. The algorithms for graph construction
and maximal cliques computation are described here.

A. Construction of the graph

In the δ-graph, a vertex represents the character set
of an exact common interval, while edges link vertices
whose character set differs by less than δ according
to the chosen distance d. A vertex stores its size and

2

the list of its locations in the order in which they are
found on the genomes. For a location we record the
genome identifier and the interval in gene positions of
the location. All vertices are stored in a list sorted on
character sets’ cardinality. To compute the distance be-
tween a character set and that of a location, we maintain
a hash-table containing all the positions of any gene on
each genome. The processing of each sequence is done
in two distinct steps. The genomes are first processed to
detect substrings that are maximal with respect to their
character set. Each maximal substring is then processed
by calling a second algorithm with the character set and
the location as input.

In order to compute all the maximal substrings of a
genome Si, we define b, e as the start and end positions
of the current substring, and ξ is the character set of
Si[b, e]. The set ξ and its size t are initialised and updated
as b and e move on Si.

A second algorithm processes a maximal substring and
its character set ξ to update the graph. First, we check
whether there exists a vertex for ξ in the current δ-graph.
When not, we just create a new vertex containing the
current substring as its first location. If such vertex V
exists, we append the current substring in the location list
of V . In case where V now has at least one location on q
genomes, we compute the distance between V and each
vertex W such that C(W) lies in range [|ξ| − δ, |ξ|+ δ],
and add a new edge if this distance is < δ.

Theorem 1: The algorithm described in the previous
paragraphs builds the δ-graph in O(k2n5) time and
O(k2n4) space.

B. Computation of the maximal cliques in the graph

Given the definition of δ-graph, for q = 1, an approx-
imate common interval of the k genomes is a maximal
clique in δ-graph. We studied two alternative algorithms
to compute all the maximal cliques in δ-graph: a static
and a dynamic one. In [12], [8], the authors describe an
algorithm for computing maximal cliques dynamically
during the building of the graph. We provide, to our
knowledge, the first implementation of this algorithm.
The second algorithm is called MACE ([7]). It computes
the maximal cliques once the graph is built. We use an
implementation from its authors, which takes at most
O(k3n6) time in our setup.
The first method can be used when one needs to output
the cliques as the genomes are processed or if one
adds new genomes to an already existing graph; in the
latter case, it avoids computing the maximal cliques
from scratch on the whole graph. As illustrated in our
result, the algorithm MACE is faster for a non dynamic
application.

C. Computation of the maximal connected component in
the graph

The maximal connected components (CC) of δ-graph
are the connected clusters of genes of the input genomes.
Each vertex belongs to only one connected component.
CC are computed dynamically during the graph con-
struction. Each CC is represented as a list of vertices,
in which each element is linked to its back CC. Thus,
for a given vertex finding its CC is done in constant
time. Since each CC also stores its size, the fusion of
two CC is done in Θ(n), where n denotes the size of the
smallest CC. Therefore, computing the CC during graph
construction does not increase the algorithm complexity.

III. RESULTS

Our algorithms are applied on three bacterial datasets
which differ in term of number of genomes, genome
similarity, and of gene numbers. It allows to study which
factor impacts the running time and graph complexity.

A. Material

The δ-graphs from some bacterial genomes from the
Escherichia and Ehrlichia genus were computed. Three
distinct datasets were formed:
DS1 contains two genomes of Escherichia coli:
Escherichia coli K12 MG1655 and Escherichia coli
K12 W3110
DS2 contains five bacterial genomes of Escherichia:
Escherichia coli K12 MG1655, Escherichia coli Sakai,
Escherichia coli atcc8739, Escherichia coli uti89 and
Escherichia fergusonii
DS3 contains six Ehrlichia genomes: Anaplasma
phagocytophilum, Ehrlichia canis str. Jake, Ehrlichia
chaffeensis str. Arkansas, Ehrlichia ruminantium str.
Gardel, Ehrlichia ruminantium str. Welgevonden and
Neorickettsia sennetsu

B. Experimental results

Table I compares the running time and the δ-graph
built for each dataset. The alphabet size clearly impacts
δ-graph construction time as one would expect. Also, the
size of δ-graph depends on the genomes’ similarity. For
example, the two genomes of E. coli K12 strains (DS1)
are very closely related and give rise to a bigger graph
than that obtained for five Escherichia genomes (DS2),
which are less similar.

When comparing the two cliques computation algo-
rithms, one notices that the static version runs much
faster. Our graphs have small densities, ranging from
2.85 × 10−5 to 3.5 × 10−4, and the implemented algo-
rithm has been optimized for sparse graphs: this likely

3

DS1 DS2 DS3

Alphabet size 3078 5471 2325
genomes 2 5 6
Graph constr. time 8,9 hours 42 hours 40 minutes
Dynamic cliques
computation time 1.5s 0.8s 0.3s
Static cliques
computation time 0.5s 0.2s 0.03s
cliques 405590 200563 30365
CC 15 37 25
vertices 211339 107665 16605
edges 637173 324968 48197

TABLE I: Comparing the δ-graph size, the algorithms
output and running time on three real datasets when run
with parameters s = 3, δ = 2, and q = 2.

explains our observation. This suggests that considering
the graph structural properties may help optimizing the
algorithm and improving its running times.

IV. CONCLUSION

We consider a graph-based model of approximate
common intervals for multiple genome comparison. We
provide an implementation to build a graph with poten-
tially interesting information on rearrangement events,
and develop an interface and visualisation tools to anal-
yse this graph. This method can be used to help in
the task of annotation of genomes and also to infer
homology relationships between genes. To give a bio-
logical proof of concept, we chose and investigated one
connected component of the Escherichia dataset for its
size allowed a visual representation and it illustrates an
apparent ”substitution” of genes between two species.
This analysis yields some reasonable evidence of a
missed gene in the annotation of a well studied, and
pathogenic strain of Escherichia coli, one of the most
studied species. A possible homology, or even orthology
relationship can be proposed between the proteins of the
three species under consideration.

Future research avenues include exploring the graph
properties, and characterizing the subgraphs generated
by different types of genomic rearrangements. We al-
ready know that insertions/deletions cause a disturbance
in the graph connexity, and that inversions provide trian-
gular structures with anomalies, but these observations
could be refined and extended.

Other research efforts would complement this study:
the optimization of the graph construction in order to
analyse more genomes and more complex genomes is
one of them. It would also be interesting from a biolog-
ical viewpoint to study the influence of the parameter δ.
In our experiments, we set δ = 2 to enable visualising
the graph and its components, but this remains a strong
constraint on the similarity between the character sets.

Releasing δ would enlarge the locations involved in
connected components.

The flexibility of this framework is a major advantage.
Although choosing a distance measure may not be easy,
it allows to investigate new distances, for instance by
considering weights based on confidence in the orthology
relationship, or other structural and fonctional character-
istics.

ACKNOWLEDGMENTS

AC, PR, and ER are supported by the French Na-
tional Research Agency (CoCoGen project) [BLAN07-
1 185484]. PR benefits from a grant from French Min-
ister for Research and Education.

REFERENCES

[1] A. Amir, L. Gasieniec, and R. Shalom. Improved approximate
common interval. Information Processing Letters, 103(4):142–
149, 2007.

[2] S. Böcker, K. Jahn, J. Mixtacki, and J. Stoye. Computation of
median gene clusters. In RECOMB, pages 331–345, 2008.

[3] C. Chauve, Y. Diekmann, S. Heber, J. Mitxacki, S. Rahmann,
and J. Stoye. On common intervals with errors. Forschungs-
berichte der Technischen Fakultät, Abteilungsinformationstech-
nik/Uni. Bielefeld, report 2006-02, October 2006.

[4] S. Heber, R. Mayr, and J. Stoye. Common intervals of multiple
permutations. Algorithmica, 60:175–206, 2011.

[5] K. Jahn. Efficient computation of approximate gene clusters
based on reference occurrences. Lecture Notes in Computer
Science, 6398/2011:264–277, 2011.

[6] X. Ling, X. He, and D. Xin. Detecting gene clusters under evolu-
tionary constraint in a large number of genomes. Bioinformatics,
25(5):571–577, 2009.

[7] K. Makino and T. Uno. New algorithms for enumerating all
maximal cliques. In Algorithm Theory - SWAT 2004, volume
3111 of Lecture Notes in Computer Science, pages 260–272.
Springer Berlin / Heidelberg, 2004.

[8] T. J. Ottosen and J. Vomlel. Honour thy neighbour—clique
maintenance in dynamic graphs. In proceedings of the Fifth
EuropeanWorkshop on Probabilistic Graphical Models, 2010.

[9] R. Overbeek, M. Fonstein, M. D’Souza, G. D. Pusch, and
N. Maltsev. The use of gene clusters to infer functional coupling.
PNAS, 96(6):2896–2901, 1999.

[10] S. Penel, A. muriel Arigon, J. françois Dufayard, A. sophie
Sertier, V. Daubin, L. Duret, M. Gouy, and G. Perrière. Databases
of homologous gene families for comparative genomics. BMC
Bioinformatics, 10, 2009.

[11] T. Schmidt and J. Stoye. Quadratic time algorithms for finding
common intervals in two or more sequences. Proceedings of
the 15th Annual Symposium on Combinatorial Pattern Matching,
2004.

[12] V. Stix. Finding all maximal cliques in dynamic graphs. Com-
putational Optimization and Applications, 27(2):173–186, 2004.

[13] T. Uno and M. Yagiura. Fast algorithms to enumerate all common
intervals of two permutations. Algorithmica, 26:2000, 2000.

4

