
ELSEVIER Theoretical Computer Science 200 (1998) 261-287

Theoretical
Computer Science

Optimal representation in average using
Kolmogorov complexity

E. Rivals a,*, J.-P. Delahaye b

a Theoretical Bioinformatic (SlS), Deutsches Krebsforschungzentrum (DKFZ),
Im Neuenheimer Feld 280, Heidelberg 69120. Germany

b Laboratoire d’lnformatique Fondamentale de Lille U.A. 369 du C.N.RS., Universitd de LILLE I,
F59655 Villeneuve d’dscq., France

Received September 1995; revised August 1996
Communicated by M. Crochemore

Abstract

One knows from the Algorithmic Complexity Theory ’ [2-5,8, 141 that a word is incompress-
ible on average. For words of pattern xm, it is natural to believe that providing x and m is an
optimal average representation. On the contrary, for words like x @ y (i.e., the bit to bit x or
between x and y), providing n and y is not an optimal description on average. In this work,
we sketch a theory of average optimal representation that formalizes natural ideas and operates
where intuition does not suffice. First, we formulate a definition of K-optimality on average

for a pattern, then demonstrate results that corroborate intuitive ideas, and give worthy insights
into the best compression in more complex cases. @ 1998 -Elsevier Science B.V. All rights
reserved

Keywords: Optimal coding; Compression; Kolmogorov complexity; Information theory

1. Introduction

The Algorithmic Complexity Theory is concerned by the representations of an object

y, especially by its shortest representation whose length is by definition the Kolmogorov

complexity of y and is denoted K(y). We assume objects are always represented by

texts over the alphabet (0, l}, indeed objects are texts; we also write sequence. Let y

be an object, i.e., a text. The two main results of the Algorithmic Complexity The-

ory are the uncomputability of K and the general uncompressibility of texts. As the

function K which maps an object y to its Kolmogorov complexity K(y) is uncom-

putable, one cannot determine of how many bits a given description of y exceeds
K(y). The second result states that only a few texts are compressible, i.e., have shorter

* Corresponding author. E-mail: e.rivals@dkfz-heidelbergde.
’ This theory is also called the Kolmogorov complexity or Algorithmic Information theory.

0304.3975/98/$19.00 @ 1998 -Elsevier Science B.V. All rights reserved
PII SO304-3975(97)00275-Z

262 E. Rivals, J.-P. Delahayel Theoretical Computer Science 200 (1998) 261-287

descriptions than themselves. However, in practice, the objects we handle and stock in

an encoded form inside computer memories are very often compressible. They usually

belong to classes: natural language texts, computer programs, images, accounting files,

etc, for which adapted compression schemes achieve good compression rates by coding

common regularities to all objects of a class [1, 131.

The designer of a code works between those two paradoxical situations. On the one

hand, he is unable to prove his code is optimal for a class, although he can justify

it by common sense arguments. On the other hand, his attempt to come up with a

code is fair, because all objects of a specific class share a common structure and seem

compressible. How can we know if a code does not hide further redundancies that a

better algorithm could also compress? One of our goal is to supply formal means to

answer this question.

Let us examine the Kolmogorov complexity concept. The length of all descriptions

of y is limited by K(y), but the notion of an optimal representation makes no sense in

general, because K(y) depends on the universal Turing machine on which it is carried

out. For instance, we can define a universal Turing machine that maps y to a minimal

program of length 100, and another that maps it to a minimal program of length 0.

Hopefully, when we change the reference universal Turing machine, the measure of

Kolmogorov complexity does not vary more than a fixed constant: K is robust, but

not unique. Thus, for a text considered alone, it is undecidable whether a code is

optimal or not. The uncomputability of K also prevents us from using it as limit.

Indeed, it is easy to provide an upper bound for the complexity of a sequence, but

very difficult or impossible to assess it exactly, except for a finite number of sequences.

There is nonetheless a real link between Kolmogorov complexity and compression: not

a practical one, but a theoretical one.

As we cannot know if a representation of a single text is optimal, it is natural to

introduce an optimality notion over a text family. We need a notion less restrictive

than K, such that it would be practicable. Our attempt is based on the following idea.

The structure of a text often points out an intuitively optimal description. For instance,

when a text is made of the concatenation of the same factor:

Example over {a,b}: (~baab)~ = abaababaababaab

an intuitively good representation is the tuple: factor and number of times it is

repeated

abaab; 3

For words of pattern Y”, it is natural to believe that there exists no shorter description

than to give the tuple (x,m). Any text of this family can be described that way. Indeed

for most words of this family, the constitutive factors (the corresponding x) do not

contain regularities: they are also texts over (0, 1) and are thus incompressible. This

applies also to the item “number of repeats” (i.e., the corresponding m.) So, most of

these texts are optimally coded by (x,m). In other words, this representation is optimal

E. Rivals, J.-P. Delahayel Theoretical Computer Science 200 (1998) 261-287 263

on average over the family of texts having this pattern. We propose a formal definition

for this intuitive idea.

Our formalism enables us to prove the average optimality of a representation like

the above-mentioned one, but also the non-optimality on average. For instance, over a

family of texts of this pattern,

where 7 is the symmetric of y (over {a,b}, a is the symmetric of b and conversely;

for instance baa is the symmetric of abb), the preceding representation yu; m is no

longer optimal. The factor is always made of a word concatenated with its symmetric,

but this regularity is “forgotten” by the representation. A better way to code it is

y;m instead of yy;m.

1.1. Comparison with other approaches

Other works already attempt to grasp the concept of optimal representation. A com-

mon characteristic is that in each attempt the definition of optimality always depends

on an hypothesis: in Shannon’s theory, optimality is defined with respect to a given

probability law; in the Algorithmic Complexity Theory, the representations of an ob-

ject are programs which can be performed on a reference universal Turing machine;

in Goldberg-Sipser’s approach, texts to compress belong to a given language; in our

approach, an optimal representation depends on a structural hypothesis given by a

pattern. Notice that the Probabilistic Theory of Information and our approach define

average optimalities, while the Algorithmic Complexity Theory and Goldberg-Sipser’s

approach propose exact optimalities.

(a) Probabilistic theory of information [3,7, 121. The letters of transmitted mes-

sages are assumed to occur with respect to a given probability law (for instance, the

probability of 0 is i and probability of 1 is $.) The average and reachable limit in

bits for the encoding of each letter equals the entropy of the probability law (for our

example, it equals -f log(i) - i log(i).) By extension, it gives a compression rate

limit for any message. This approach seems restrictive because no regularities are taken

advantage of except statistical ones, and some structural properties of some classes of

texts cannot be easily translated into probability (although in text compression theory

area, some equivalences between dictionary models and probabilistic models are given

in [l].) Moreover, in practical text compression, algorithms in use are not restricted

to the coding of statistical regularities: when structural properties are encoded, like the

occurrence of repetitions in the text, dictionary techniques give rise to much better

compression rates [1,4, 131.

(b) Algorithmic complexity theory [2,3,5,8, 141. In this theory, the optimal rep-

resentation of a text is the shortest program that outputs the text. The length of this

program is the Kolmogorov complexity of the text. This minimal length depends on a

reference universal Turing machine and on its infinite set of possible programs. Never-

theless, the theory is extremely general because the Kolmogorov complexity measure

264 E. Rivals, J.-P. DelahayelTheoretical Computer Science 200 (1998) 261-287

has been proved to be robust with respect to the choice of the Turing machine (if the
reference machine is changed, the variation of the Kolmogorov complexity measure
is limited by a given fixed constant which only depends on the machines.) But, as
mentioned above, this theory is unrealistic because of the uncomputability of K.

(c) Goldberg and Sipser’s approach [6]. It assumes that the words to compress be-
long to a given language. A compression function is optimal if it encodes each text in a
number of bits that depends on the language “density” (for a more detailed description,
see Section 2.6). A general and optimal algo~thm, called ranking, is proposed. As the
condition of optimal&y is very restrictive, the algorithm is complex and unpracticable.
(Goldberg and Sipser [6] show that ranking is in the class #P in time.)

(d) Optimal average representation approach. The origin of a text often prescribes
an algebraic structure for the text. For instance, a song is made of a sequence of
verse-chorus repeated n times. This sort of knowledge about the stmc~e of songs (a
peculiar class of texts) can be taken into account in the encoding, although nothing
is known about the value of 12 not even its probability distribution. In fact, a coding
scheme for songs can contain the chorus only once and all the verses in their order
of apparition. Nearly all songs should be efficiently encoded this way; only a few of
them should have encoding slightly longer than the song itself.
A pattern is a decoding scheme that can take such structural hypothesis into account
(without any probabilistic knowledge.) A pattern is optimal if the average information
content of the codes is asymptotically equal to the average information content of the
objects. The information content measure is the Kolmogorov complexity for which an
upper bound can be found most of the times. As in b), a reference Turing machine
is assumed, but the fact that our definition is asymptotic implies the robustness of
the theory regarding to the reference Turing machine choice. Moreover, considering an
average optimality makes our definition effectively usable as opposed to the Algorithmic
Complexity Theory. Notice that in the case of songs, n is indefinite, but can be equal
to 1, hence any text can be a song. Therefore, a structural hypothesis means more than
belonging to a language (in a sense, it generalizes the Goldberg-Sipser approach.)

In conclusion, our approach cannot be reduced to any of the preceding ones. It
takes advantage of structural hypothesis which is not possible with the Shannon’s
approach. As opposed to the Algorithmic Complexity Theory, it is computable and
usable. While the compression functions of Goldberg-Sipser are always one-to-one,
we see in Section 2.6 that a pattern may not be injective (May codes can match a
single object), but still optimal.

1.2. A link with a probabilistic point of view

Both statistical and structural hypotheses suppose the strings to represent are pro-
duced by a source. A statistical hypothesis assumes that the strings are output by a
random mechanism according to a given distribution law. A structural hypothesis as-
sumes strings comes from a computational mechanism, but a link exists with a special
kind of probabilistic view-point. To explain this link, consider those two cases.

E. Rivals, J.-P. Delahayel Theoretical Computer Science 200 (1998) 261-287 265

The “null hypothesis” case. Without any information, the more natural point of view
is to consider that strings are produced by a universal Turing machine and hence
are distributed according to the universal Levin’s measure. (the Levin’s measure
formalizes the Occam’s Razor: “shortest strings are more probable”.)
The “x”’ hypothesis” case. The strings to represent are of pattern x”‘. This structural
hypothesis assumes a source producing the strings xm (notice it can be any string of
(0, 1 }*) as follows: a universal Turing machine randomly produces a text n and an
integer m according the universal Levin’s measure, and then computes x”. Therefore,
this structural hypothesis can be seen as the image of the Levin’s measure by this
computational process, i.e., as an uncomputable * probabilistic hypothesis.

The next section introduces the concept of a pattern, the definition of K-optimality,
and is devoted to the basic results of our theory. Section 3 proves the optimality or
non-optimality for a set of basic patterns. Section 4 examines how patterns can be
composed and therefore how the theory can be extended from the previous set of
patterns. The last section concludes.

2. ~finitions and basic results

2.1. Preliminary notations and notion of pattern

This subsection introduces the notion of a pattern which formalizes a possible rep-
resentation for a family of objects. The property of optimality defined below applies
to a pattern. Some notations for sets of strings, for the operator Avg, and also the
Kolmogorov complexity of a text are introduced. A comparison of the Kolmogorov
complexity in many variables and the sum of the complexity of each variable is given
as a claim for later use.

Notation 1. The reference alphabet is {0, 1) and the set of all finite strings over (0, 1 }

is denoted by (0, I}*. If E is a subset of (0, I}*, EC” (respectively E<“, E”) denotes
the set of all strings of E whose length is lower than n (resp. lower than or equal
to n, resp. equal to n.) N” denotes the set of strictly positive natural integers and N
denotes N” U (0). If A is a subset of N, A<” (respectively AGn) denotes the set of

integers in A lower than n (resp. lower than or equal to n.) If t is a string over (0, I },
It/ denotes its length. If n is an integer, In/ denotes the length of its binary writing.

Notation 2. Let E be a finite set, h a mapping from E to Iw (the set of real numbers);
we denote

‘The Levin’s measure is oncomputable because it is based on the Kolmogorov complexity.

266 E. Rivals. J.-P. Dclahayel Theoretical Computer Science 200 (1998) 261-287

Definition 1. Let Types= { N, N*, (0, I}“). A pattern f is a mapping from T to
(0, I}* such that

f: T + (0, l}“,

t - f(t),

where T is a product of items in Types. If T = Al x - . . x Ak is such that for all i, Ai
is in Types, we have

f :A, x ... x Ak --+ (0, I)*,

t1,..., tk +-+ f(tl,...,tk).

A pattern defines a possible description of a text by a k-tuple of objects; T gives the
type of each object: ti is of type Al,. . . , ti of type At,. . . , tk of type Ak. The pattern
is the mapping which, from this k-tupie of objects, builds the original text, i.e., the
sequence of characters also called its natural representation. In other words, a pattern
gives a possible coding scheme for a set of texts and the decoding algorithm for it.

Example. The following pattern,

f: {o,l>* x N --+ {o,l}*,

(X,m)+-+Xm,

gives a coding scheme for words in (0, I}* made of m-fold repetition of a factor x
where 111 is an integer. This representation includes two items which are themselves
objects: the factor n over {0, 1) and the number of times it is repeated, the integer m.

Remark. Until now, we have not required that the decoding algorithm be computable.
If it is, we say the pattern is computable. For every computable pattern, it is easy
to find a corresponding compression algorithm (for instance the one which works by
enumeration) In practice, for the cases we study hereafter, we always find poI~omia1
compression algorithms.

Notation 3. If y is an object and U a reference universal Turing machine, then Ku(y)
denotes the Kolmogorov complexity of y, i.e., the length of one of the shortest pro-
grams able to output y if carried out on U. While the Kolmogorov complexity is
robust, we assume a universal Turing machine is fixed and simply denote by K(y)
the Kolmogorov complexity of y. We denote by H(y) the self-delimited Kolmogorov
complexity of y. This measure of complexity takes into account the self-delimitation
of the programs that output y. The measures H and K coincide within an additive

term of O(log(l.4)) (see more details in [8],)
A program is self-delimited if the machine knows where it ends while reading it. It

differs from a normal program by the way it is written on the Turing machine’s tape.
On a Turing machine whose set of programs only includes self-delimited programs,
the latter must be written over the alphabet (0, I} only, while they are usually written

E. Rivals, J.-P. DelahayeITheoretical Computer Science 200 (1998) 261-287 261

over the alphabet {0,1,space}, where the space is used as a delimiting character. With
the last alphabet, the tape begins with the program which is followed by spaces. With
(0, 1 }, the program encodes its own length such that its length can be found on a tape
filled with 0 and 1.

We also use a version of K (and of H) in many variables, it is denoted by:

K(xi ,. . .,xm). It is the length of the shortest program that outputs xi, and x2, until
x, and a way to tell them apart. This program is obviously longer than the one that
only yields the concatenation of all xi, i.e., is greater than K(nl.. . ’ .xm).

Claim 1. Moreover (see [8, p. 1021)

K(xl ,...,x,)dK(xl)+--. +K(h)+O(log(~K(xi))),

where CL, K(Xi) tends to irzjnity.

2.2. Definition of the optirnality of a pattern

First, the definition of optimali~ is explained before being formally stated. Then, a
second natural version of this definition is proved to be equivalent.

2.2.1. Justijication of the definition of optimality
The main definition of this work concerns the optimality of a pattern from the view-

point of the length in bits of the representation. Let y be a text over (0, 1). Intuitively,
a description of y is a list of informations that enables to build up y. It implies
the existence of a decoding algorithm able to output y from this list of informations.
Among all the representations of y, some are shorter and others longer than its natural
representation. With the word abaababaab and the pattern mentioned in the example,
(abaababaab, 1) indicates that abaababaab is made of the concatenation of abaababa~b
once, while (abaab,2) means it is also twice the word abaab. Both descriptions are
possible for y, but the former is longer than its natural representation and the latter is
shorter. Among all possible descriptions of y, some just contain necessary informations
for the decoding of y, whereas others include useless informations and therefore are
longer than the former. From the information content view-point, the best ones are
those of length K(y).

The mapping from y to K(y) is not recursive, so it is often impossible in practice
to know if a given text is maximally compressed. Roughly stated, the Kolmogorov
complexity does not allow to use effectively the concept of optimal description, and
therefore does not reveal our intuition that there exists some optimal representation.
Another objection is the existence of a universal Turing machine which accepts short
programs for y (for a given y); it prevents from talking of an optimal representation
for a single y. This forces us to consider the concept of optimal representation only
for a text family. If a structural hypothesis is associated with the texts to represent
and if we care only about an average optimal&y, it becomes possible to define and use

268 E. Rivals, J.-P. Delahayel Theoretical Computer Science 200 (1998) 261-287

effectively the concept of optimality of a representation. This enables us to show that
texts of pattern xm are optimally described on average by the tuple of data: x,m.

Let f be a pattern. t optimally represents f(t), if it contains the same amount of
information than f(t), i.e., if

I4 = W-(t)).

By requiring this condition to be true on average for all t E E (for E being any set),
we obtain that f is optimal on average over E iff

$$lC = $p(fW.

Such equality is impossible to prove if E is finite, because of the uncomputability of K.
Therefore, we only consider infinite sets for E, for which the following statement is the
most natural asymptotic version of the previous equality (other versions are considered
later):

AWIII=n K(f(t))
hJjt/=n ItI

--'n+cc 1

which is equivalent to

AugK(f (t)) = n + o(n).
+n

This leads to our definition.

lotion 2. A pattern f: T --f (0,l)” is K-optimal 081 average iff

AW K(f (t)) = n + o(n),
Itl=n

i.e., iff

iim l~~gitl=~~~~(~)) - 4 = o
n-+co n

f is H-optimal on average iff

(1)

Aw Wf (t)) = n + o(a). (2)
p/=n

2.2.2. A second natural version of optimality

The definition of optimality has the same meaning if the average is calculated over
{t: 1 t 1 G n} i.e. over a “disc” of representations rather than on “ring” of representations.
For the sake of clarity, we examine the case of a pattern in one variable J: T -+ (0, l)*.
The property also holds in the general case.

Property 1. f is K-optimal on average 13

Avg K(f (t)) = n + o(n).
111 Cn

(3)

E. Rivals, J.-P. Delahaye f Theoretical Computer Science 200 (1998) 261-287 269

Proof. We have to prove that the original definition implies Eq. (3), and then that this
equation implies Eq. (1).

=x: We assume that ~~g,~,~~~{~~~)) = n -I- o(n) and show that Avg,,,,,K(‘(t)) =
n + o(n). Let a > 0 and

g(n) =
n - A~Q+,UV))

n

We know that lim n+oc, g(n) = 0. By assumption, there is ~0 > 0 such that

Ynrno 18 - ~~Ql*l=~~(~(~))l < ff
,

n 6‘

For any n >no, we have

~~Q~t~+Jxf(~)) C”,=o[2”AYg,r,,,lY(f(t))I =
n n(2”f’ - 1)

= C”mz,2m~(l - s(m))
n(2”+1 - 1)

= cz; 2*m - s(m)) + ELz, 2941 - s(m))
.(P+ - I) .(2”+4 - 1)

= r=:z; 2@wl - s(m))
n(2”+’ - 1)

+ CL”pQrn _ C:=,2mmQ(m)

.(2”+’ - 1) n(2”+’ - 1)

< t3::; 2@w - s(m)> + cLQ @22” + CL& 2m4Qtm)l
.(2”+* - 1) n(2”+4 - 1) 42”~” - 1) .

Let nr > 0 such that

sfnBn, c::; m2*u - s(m))
.(2”+’ - 1)

<ST
3’

We have

n 2~~lQ(~)l c lQ(fi)W”
m=nO n(2”+’ - 1) = n(2”+-’ - 1)

+ /g(n - l>/(n - 1)2=-l
@?I+1 _ 1)

-I- +
‘

lg(n)P”

<Zn+‘+
jg(n - 1)/2”4 IQ(no)12”0

28-b1 - 1 +. -* + 2”fl _ 1

a la 1 a a
-=y~~+-‘+2n-“oYc~

and

c;=,, Mzrn = (n - 1)2”+1 - (no - 2)2”0

,(2”+’ - 1) n(2”t-’ - 1)

1

=1--&r+

-2”+l - (no - 2)2@

n(2”+’ - 1)

= 1 - b(n),

270 E. Rivals, J.-P. Delahayel Theoretical Computer Science 200 (1998) 261-287

where lim,,, b(n) = 0. Therefore, there is nz >O such that

kr’nQ [b(n)1 < ;.

Let IZ > max(ns, ni,n2), then we obtain

< I+;+;+;-1

= a.

From this follows Eq. (3).

+: We assume that Augltlcn K(f(t)) = IZ + o(n) and show that Anglll_ K(f(t)) =

n + o(n). Let

h(n) =
n - 4qtlQn Kf(t))

n

We know that lim,,, h(n) = 0. For all n > 0 we have

Aug K(f(t)) = CLlP”-qt,=rn af(t))l

ItI <n
p+1 _ 1

2”&qtl=n w-(t)) + C~~~[2mAug,t,=nK(f(t))l
2”fl _ 1 p+1 _ 1

2”~Gqt~E,ww) (2” - =
p+1 - 1

+ wqtl <n-,w-(t))
p+1 - 1 ’

thus

= (2 + a(n)) [n(l - h(n)) - (i + d(n)) (n - l)(l - h(n - I))]

= n + o(n),

where u(n), d(n) and h(n) tend to zero when n goes to infinity. 0

2.3. Without a structural hypothesis, texts are incompressible

The following property expresses in terms of average optimal@ a basic result of the

Algorithmic Complexity Theory. If one knows nothing about a text, if no hypothesis is

given on its structure, on average its shortest representation is the text itself. In short,

most texts are incompressible. This result is equivalent to prove the optimality of the

pattern “Identity” (i.e., the one which outputs its input). This subsection shows many

E. Rivals, J.-P. Delahayel Theoretical Computer Science 200 (1998) 261-287 211

versions of this result which allow a third version of the definition of optimality: We

demonstrate that the result of incompressibility is valid using the classic Kolmogorov

complexity either in one or many variables, and also computing the average over a

“disc” of representations (instead of a “ring”). All properties can be obtained with the

self-delimited Kolmogorov complexity in a similar way (but are not included here).

2.3.1. Incompressibility for K in one variable

Property 2. Avgltl &C(t) = n + 0(1).

Proof. A main result of the Algorithmic Complexity Theory tells us that there is c > 0

such that

‘Jt E (0, I}* K(t) < ItI + c,

where c is a constant which only depends on the reference universal Turing machine.

Consider the Turing machine M which prints its input. A universal Turing machine

can use M by running the program which begins by the self-delimited number of M

followed by t: O”c”)lt. The length of this program is n(M) + ItI and coincides with Jtl

within a constant term, since the numbering of Turing machines is fixed. By taking

the average of the Kolmogorov complexity of strings in E = {t: 1 t I <n}, we have

Avg K(t) <n + c. (4)
IfI <II

Let n be an integer, U a universal Turing machine and E the set of all strings of

length less than or equal to n. Since II is fixed, for every text t in E, K(t) is also

fixed. We have to find a lower bound for

c,,, $n K(t)

Card(E) ’

At best, among all those minimal programs, one is of length zero, two are of length

one, and so on until n where 2” minimal programs are of length n, i.e., at best they

map with the set of all strings in (0, l}* of length less than or equal to n. This implies

C K(t)a$Ji*2’
ltl Gil i=O

and since

&zEN*:ki*2’=(n-1)*2”+‘+2,
i=O

so

Ciq <n K(t) ~ (n - 1) * 2n+k + 2

Card(E) 2n+1

=n-1+2-“.

We conclude from inequality (4) and last inequality. 0

272 E. Rivals, J.-P. Delahayel Theoretical Computer Science 200 (1998) 261-287

This second property expresses the incompressibility when the average is computed

over a “ring” of representations.

Property 3. AugIll_ K(t) = n + 0(1).

Proof. Same proof as for the preceding property.

2.3.2. Incompressibility for K in many variables

We extend these properties to the version of K in many variables (the demonstrations

are similar).

Property 4.

Aw K(xl,...,~~)=n+O(log(n)).
IX, I+...+Ix”l Qn

Property 5.

Aug WI , . . .,x,) = n + O(log(n)).
/XI /+...+lx,l=n

2.3.3. An equivalent formulation of the optimality

Since we know that the mean length of representations over the set {t: It/ = n} equals

the mean Kolmogorov complexity over the same set, we formulate two equivalent

versions of K-optimality. The same equivalences hold if K is replaced by H, the self-

delimited Kolmogorov complexity.

Theorem 1. f is K-optimal on average @

Avg K(f (t)) = Avg K(t) + o(n)
Itl=n Itl=n

or ifs

Aog K(f (t)) = Aug K(t) + o(n).
jtl<n (fl <n

Proof. Follows from Definition 2 and Properties 2 and 3. 0

2.4. Compatibility with the self-delimited Kolmogorov complexity theory

The Algorithmic Complexity Theory with K is natural, while the theory with H, also

called the self-delimited Kolmogorov complexity theory, is technically more complex

but also more achieved. The latest allows to define the Levin’s a priori probability

measure [8], which is a core concept of the theory and has multiple implications in

various areas (e.g., learning theory, computational complexity.) Both theories evolve

simultaneously because of their importance and usefulness. In order to keep our theory

E. Rivals, J.-P. Delahaye I Theoretical Computer Science 200 (19%) 261-287 273

of average optimal representation in agreement with those two theoretical frameworks,
we prove that IS-optimality and H-optimality definitions are equivalent, First, we need
the foiIowing lemma.

Lemma 1.

Proof. Let n be an integer. We know that for any t,

H(t) >:K(t)

and that there is a d > 0 such that

H(t)dK(t) + Zlogflll) + d.

Thus,

AugFJ(t) G Aug K(t) + 2 Aug log(ltl) + d = Avg K(t) c 2 log(n) + d
It/=* /+?I ltl=n &?I

=$ $ H(t) = ;~~w + w%(n)). q

Theorem 2. If f is a pattern, then f is K-optimal on average lff it is H-optimal on
average.

Proof. It follows from the fact that &gjtl_ H(t) = Avg~_~ K(t) i- O(log(a)) implies

that ~~g,j~=~~(t) = ~~gi~l=*~(t) + o(n). Cl

Remark. Since both definitions are equivalent, we just say about an either K-optimal
or H-optimal pattern that it is optimal.

Let us give two simplifying lemmas for forthcoming proofs of optimality and
non-optimal&y. The first one asserts that if f is computable, the mean complexity
of f(t) is less or equal to n within an additive term of O(log(n)). Actually, if a pat-
tern is computable, then one can find a program which, for all t, outputs f(t) with
input t. Thus, the complexity of f(t) is less or equal to the one of t within a term of
O(log(ItI)); it also holds on average.

Lemma 2. Let f: T -+ (0, l)* be a computable pattern, then the fo~~ow~n~ i~e~~~~i-
ties hold:

if@ K(f(O) Q n f O(log(n)),
n

f4i&H(f(t)) G n + OUog(n)).

274 E. Rivals, J.-P. Delahayei Theoretical Computer Science 200 (19981 261-287

Proof. Let U be a universal Turing machine. If f is computable, Church’s thesis
asserts the existence of a uniform program which computes f with input t on U.
At best, this program includes one of the shortest self-delimited programs for t to
produce t. The rest of the program is of constant size c, where c depends on the
reference machine U (as a matter of fact, the same program in C or in Pascal does
not have the same size.) So we have

W#V))dW) + c,

thus thanks to Lemma 1:

;;li~smwK~ + W%(4).
n

Since for all t, the self-delimited complexity N(t) equals K(t) within a term of log(lll),

we also have

If T is a product of set from Types, then the program not only supplies t, but ti, and
t2, until tk, which must therefore be self-delimited. It costs a term of O(log(n)), q

The second lemmas gives a sufficient condition for a pattern to be non-optimal.

Lemma 3. If

~~-~~~,f~~~~i f0lnl

then f is non-optimal.

Proof. Easy. q

2.6. Inventiveness and ~pt~rna~it~?

This main result of this subsection shows that an injective pattern must be optimal.
Info~ally, the injectiveness implies associating one and only one code to each string
in a set. If one wants to compress potentially any string, one cannot afford less codes.
If one maps more than one code to each string, one wastes the resource of available
codes. 3 The pattern that maps the tuple (x, m), made of a string x and of an integer
m, to the word x”’ really does so, nevertheless it is optimal (cf. Property 10). A cod-
ing scheme can afford such a waste of codes, while still being a good representation
for a given structural hypothesis. The property which links injectiveness and average
optimality is an example of the flexibility in the coding scheme conception.

3 We use “code duplication’* or “waste of codes” to mean that many codes may encode the same string,

i.e., an image of a pattern may have many antecedents.

E. Rivals, J.-P. Deluhaye I Theoretical Computer Science 200 (1998) 261-287 215

With this result, we examine the relation between the definition optimal compression

from [6] and our definition of opt~ality. In their theory, Goldberg and Sipser only
consider one-to-one compression functions. In our theory, they correspond to injective,
and thus optimal patterns. The scope of our approach is broader than in the Goldberg
and Sipser’s theory. First, we prove the theorem linking injectiveness and optimality,
then we recall the definitions of a compression function and of optimal compression

given by [6]. The links between the two theories are summarized and the ranting
compression function is considered. About the non-injective optimal patterns, which
are not optimal in Goldberg and Sipser’s theory, a more elaborated comment is given
in Section 3.3.2.

Theorem 3. Let f be a pattern. If f is injective and computable, then f is optimal.

For the sake of clarity, we examine the case of a pattern in one variable S : T -+

(0, l}*. The theorem also holds in the general case.

Proof. Let f be a computable and injective pattern. Let us show that

We prove the following two inequalities, i.e., there are c >O and c’>O such that

AugK(f(t))<n+c,
/iI =I2

Avg K(f(t>> + ~‘2~2.
111 =n

Proof of inequality (5): It follows from the computability of f and Lemma 2.

Proof of inequality (6): Let n be an integer. Since f is injective, we have

Card(f(t): jti=n) =Card{r: jt\=n> -2”.

Since the reference universal Turing machine is fixed, the minimal programs of the 2”
f(t) are at best, the 2” shortest strings of {O,l}*. Thus,

n-l

pn K(f (t)) 2 lg i2’

and

AvgK(f (Q) = G=, Gf (t)) 2 CZJ 22’ -_ (n - 212” + 2 = n _ 2 + .p_”

pi=?! 2” 2n 2”

Hence, we can find c’ such that inequali~ (6) holds. q

Goldberg-Sipser’s theory deals with the compression of a language L over (0, I};
now we give their basic definitions for: a compression function which maps any word
of L into a code of (0, 1)” and an optimal compression for a language L.

276 E. Rivals, J.-P. Delahayel Theoretical Computer Science 200 (1998) 261-287

Definition 3. From [6], a compression function i of a language L over (0,l) is
one-to-one on L, and for all except finitely many x in L, /i(x)/ is less than jx!.

Definition 4. i optimally compresses L iff for any x in L of length n:

Three peculiarities distinguishes a pattern from a compression function. First, a com-
pression function depends on a language. Second, it maps any word in this language
to a code, while a pattern maps the set of codes onto the set of words, i.e., the pattern
is a “‘decompression’” function. Third, a compression function is one-to-one while a
pattern is only surjective. In [6], a compression function called ~a~kj~g is proposed.
Here is its definition.

Definition 5. Let L be a language. PL (which denotes the ranking on L) maps any x
to the number of words in L which are
l either of length less than 1x1,
l or of length equal to 1x1 and ranked below in the lexicographic order.

Ranking works for any language and is optimal as defined by [6].

Claim 2. For any L, r~ aptj~ally ca~p~~sses L [6].

Whatever the language, ranking is one-to-one on this language, but depends on it. If
considered over (0, l}“, r~ is not one-to-one. Therefore, its inverse function cannot be
a pattern strict0 sensu (because it is not many-to-one over (0, I}*.) Thus, we consider

PL -I : TL(L) + L.

Claim 3. From Q(L) c (0, l}* into L, rl’ is injectiue and thus optimal.

Proof. It follows from Theorem 3. El

3. Existence of optimal and non-optimal patterns.

This section points out the applicability of the theory: the optimality and non-
optimal&y is demonstrated for some basic patterns. Their structural hypothesis can be
viewed as a set of natural operations on texts or on tuples of objects. These operations
are: text concatenation, selection, logical operations, power (i.e., multiple concatena-
tion) and digits deletion. The end of the section dwells on digit deletion because it
reflects the waste of code resources in a coding scheme, and allows to understand
better how a non-injective pattern can still be optimal.

E. Rivals, J.-P. Delahaye I Theoretical Computer Science 200 (1998) 261-287 277

3.1. Patterns of concatenation, selection and logical operations

First of all, let us examine a pattern which codes a text z by any couple of substrings

(x, y) such that their concatenation gives z.

Property 6. The following pattern f, is optimal:

fl : {O,l)* x {O,l)* + {O,l)* 9

(%Y) ++ XY.

Proof. We show that

Avg K(v) = n + O(log(n))
Ibl+lvl= n

by proving the following inequalities, i.e., there are c > 0 and c’ > 0 such that

At% K(xy) dn + clog(n),
IblflYl =n

Avg K(xy) + c’ log(n) 3 n
lXl+lYl=*

(7)

(8)

which with Lemma 1, allow us to conclude.

Proof of inequality (7): Inequality (7) follows from the computability of f 1 and

Lemma 2.

Proof of inequality (8): Claim 1 means that

but Property 5 asserts that

&I KG, y) = n + O(log(n)),
Ibl+lYl =n

thus we know that there are c’ > 0 and no > 0 such that for all n > no,

Aog K(xy) + c’ log(n) > n. 0
Ixl+lYl =a

Here comes the pattern which maps (x, y) to x, i.e., it selects part of the information

in the encoded description. It is non-optimal.

278 E. Rivals, J.-P. Delahayel Theoretical Computer Science 200 (1998) 261-287

Property 1. The following pattern f2 is not optimal:

f2: (0, I}* x {O,l}* --+ {o,l>*,

(4.Y) H x.

Proof. We have to show that

~~.cl K(f2(% Y)) # n + o(n). (9)
Ixl+lvl=n

We create a partition over the set {(x, y) : 1x1 + 1 yl = H} into n + 1 subsets En,i (for i

increasing from 0 to n) of 2” couples each. If Ea,i = {(x, y) : IyI = i, /xl= n - i}, then

Card(E,,i) = 2”. We have

Aug Ix, = CL i n(n + 1)
M+lYl=*

- = ~ = ; # n + o(n).
n+l 2(n + 1)

Inequation (9) follows from this result and Lemma 3. 0

If r is a text, and (s, t) is any couple of strings such that r = s @ t, this pattern

encodes r by the tuple (s, t). For instance, in

11101101=01010101@ 101110,

the text 11101101 can be encoded by the couple (01010101, 101110). It keeps more

information than necessary. We prove it is not optimal.

Property 8. The following pattern f3 is not optimal:

f3:{0,1}* x {o,l}* 4 {o,l}*

(4 Y) I-+ x @ Y.

Proof. We have to show that

Aog K(f3by)) # n + o(n).
lbl+lYl=n

(10)

We calculate Auglxl+lvl =n K(x @ y) by creating a partition over the set E,, = {(x, y) E

((0, 1}*)2 : lxl+lyl =n} into n+l subsets En,i = {(x,y) E ((0, 1}*)2 : 1x1 =i, IyI =n-i}

(for i increasing from 0 to n) of 2” items each. Notice that the result of an x or between

two texts has the same size than the longest text:

While the use of x and y are symmetric, we can carry out the average over the

half of the n + 1 sets En,i. We consider w.1.o.g. that n is even and greater than 0.

E. Rivals, J.-P. Delahaye I Theoretical Computer Science 200 (1998) 261-287 279

We have

thus

Aug
Ixl+lvl =n

Ix $ y(< f + ;

n + o(n).

Inequation (10) follows from this result and Lemma 3. 0

Notice that the property and the proof still hold if the pattern computes a logical

“and” or “or” between x and y.

3.2. Patterns of multiple concatenations

Here, we examine the patterns which raise a text to a given power (i.e., makes

multiple concatenation of a text) for a fixed and a variable power. Let k be an integer;

the pattern which records the motif x for the text xk is injective and thus optimal.

Property 9. For a given integer k, f4,k iS optimal:

f4.k: (0, I}* + (0, I}* >
x H Xk.

Proof. By Theorem 3, as the pattern is injective, it is optimal. 0

Consider all texts built by repeating a motif, like the words in the example of the

introduction. For those texts, the pattern below is optimal. Its coding scheme is used in

compression algorithms which detect “tandem repeats” that are segments of low com-

plexity in eukaryotic genomes [15]. These algorithms are used for genetic sequences

analysis in order to measure the importance of “tandem repeats” [11, lo].

Property 10. Consider the pattern

fs: {o,l}* x N + {o,l}*)

(x,m) t-3 xm.

f 5 is optimal.

280 E. Rivals, J.-P. Delahaye I Theoretical Computer Science 200 (1998) 261-287

Proof. We show that

Aug K(P) = n + O(log(n)).
Iml+lxl =n

For this purpose, we show the following inequalities, i.e., there are c >O and c’ >O

such that

Avg K(xrn) <n + clog(n), (11)
Iml+lxl=n

Avg K(x”)
lmJ+lxl=n

which with Lemma

+ c’log(n)>n

1, allow us to conclude.

(12)

Proof of inequahty (11): Inequality (11) follows from the computability of f 5 and

Lemma 2.

Proof of inequality (12): Let n and i E N such that i < n. We create the partition

of the set of couples (x,m) such that Ix/ + /nz =rz, 1x1 # 0, [ml # 0 into n - 1 subsets

of 2” couples each. Indeed, if ,Q = {(x, m) : [ml = i, [xl= n - i}, then Card(E,,i) = 2”.
f 5 maps the 2” couples (x,M) of En,i to 2” texts which are all different. By the same

reasoning already used in property 2.3.1, we assert that at best, the shortest programs

of those 2” texts have the length of the 2” shortest strings of (0, l}*, i.e., the set of

strings of length less than or equal to n - 1, plus one of length n, which gives

Avg K(xrn) z
n + c,“:‘, j2j n+2

Card(E,,~)
=n-2+-.

Iml = i,lXl =n-i 2”

Because the average operation is associative, it follows that

Avg K(x”‘)>n - 2.
Iml+lxl =n

Therefore, there are no >O and c’>O such that

Vn>no Avg K(xm) + c’ log(n) 2 n. 0
Iml+lxl=n

3.3. Patterns of digit deletion

The patterns considered here delete some digits from the input text (in a practical

sense they are not decompression algorithms because the original text is shorter than

its compressed version.) We define a generic pattern fh,A which depends on a pa-

rameter: the set A. To decode a text x over (0, l}, fG,A deletes the bits whose rank

does not belong to A” IXI. Depending on the density of A, f 6,A either is or is not

optimal.

E. Rivals, J.-P. Delahayel Theoretical Computer Science 200 (1998) 261-287

Definition 6. Let A be a subset of N. Consider the pattern

f6,A: (0, I}* + (0, I}*,
(X)O<i<n-1 H (X)iEAQ”,

where (X)iEAGG is the subsequence

Remark that f6,A iS computable

281

of bits whose rank belongs to A”“.

iff A is recursive. After the peculiar case of the set

of even positive integers, we characterize the optimality of f&,4: f&A is optimal if and

only if A is frequent. Here, the patterns examined are typically non-injective: in the

simplest case, to one deleted position can be mapped two possible codes for the same

text. In the last subsection, the relation between this waste of codes and optimality is

commented.

3.3.1. Characterization of the optimality of f6,A.
First, let us look at an example. Consider the pattern which maps a text (i.e., a

sequence of characters) to the subword of characters of even rank. It wastes a fixed-

length part of the code, precisely half of the code, to recover the original text. Of

course, it is not optimal. If E denotes the set of even integers, this pattern is f 6,E.

Property 11. Let E denote the set of even integers, f6,E is not optimal:

f6,E: (0, I}* --+ (0, I}*,
(X)OdiQn-1 ++ (X)Zi.

Proof. Let n be an integer and x a string such that 1x1= n. We assume w.1.o.g. that n

is even. Notice that 1 f 6&x)(equals half of 1x1. We have

f,” If6,Eb)I = 5.
x n

From Lemma 3, fulfilling this condition is sufficient to obtain the non-optimality. 0

A set is frequent if the ratio of the number of integers lower than n belonging to the

set over their total number tends to one when n tends to infinity. After the definition

of a frequent set, we prove that f&A is optimal if and only if A is frequent.

Definition 7. Let A be a subset of N. A is frequent ifi

Va>0,3n,,Vn>n, :
Card(AG”),l _a

n

Theorem 4. If A is a frequent subset of N, then f 6,A is optimal, and vice versa.

282 E. Rivals, J.-P. Delahayel Theoretical Computer Science 200 (1998) 261-287

Proof. We have to show right- and left-side implications.
+: We must demonstrate that

AvgK(.f6,.4@)) = t’l f o(n)-
Ix/=?!

By definition, A is frequent means

Let II> 0, by assumption there is a rank n, such that
0 for all n>ra,: C~rd(A~“)>n(l -a/2)
l 2/n, <aa/2

Let n > n, and x be a text of length tt. To calculate fb,&), f 6,~ deletes the bits
whose rank does not belong to A”“. Those ranks are fixed and thus do not depend on
x. Hence, the image of {x, /xl= n> is the set of all texts of length Card(A <“), This set
contains 2Card(A”“) elements. Using the same reasoning than in property 2.3.1, we state
that the shortest programs of texts in f6.A {x, Ix]= n}) are at best the 2Ca’d(A’“) shortest
strings of { 0, I}*, i.e., all strings of length lower than or equal to Card(A <“) - I plus
one of length Cerd(AGn). Let III denote n - Card(A~~). Hence,

tl-Ill-1

c K(y)>n - m + C j2j>(n - m - 2)2n-m.
YEI6*.4({x,lxl=~I) j=O

Moreover, since n - Card(A”“) bits are deleted in a code to obtain its image, each
image has exactly 2”-card(A”“f = 2” antecedents (which differ from each other only in
those deleted positions which belong to the converse of A”” and are lower than n.)
The formula for the average complexity of f~,~(x) over all x of length n takes this into
account. In this formula, the complexity of each text is accounted 2” times. Hence,

f,” ~(.f6&)) =
2” La,a~~rlxl=n~) fc(Y) ~ 2”(n - m - 2)2”-m

=n-m-2.
x n 2” 2”

By assumption, we know that Card(A”“) >n(1 -a/2), and since Card(A”“) = n-m,
we obtain m<na/2. Since K(~~,A(x))< Ife,~(~)l + c for some constant c, we know

that Aug~+,K(f~,,&))~n + O(1). Thus,

e: We assume A is not frequent and show that f6,A is not optimal. A is non-frequent
means

ZlaE]O,l[, Vno>0,3n>n, :
Curd(AG’) <a

n

and therefore, if x is such that 1x1 =n we have I~~,A(x)[<an. Hence, Augl,l_,lf6,A
(x)1 <an. Thanks to Lemma 3, we obtain the non-optimality of f 6,A. III

E. Rivals, J.-P. Delahayel Theoretical Computer Science 200 (1998) 261-287 283

3.3.2. Comment about the waste of codes

About the injectiveness property, we state that a pattern may use many codes to
represent the same word. We call this a waste of codes. By definition, a pattern is
injective if it matches only one code to each word. We proved in Theorem 3 that, if
an injective pattern is computable, then it is optimal. However, some patterns waste
codes and are still optimal. A pattern may associate many codes to the same word if
the decoding process does not use part of the info~ation enclosed in the code. We
find such a case with a pattern that deletes some bits of the code, and hence does not
taken them into account to obtain the original word: The resulting word is shorter than
the code. This is what f~_,, does. To what limit can a pattern afford to waste codes
while still being optimal? Can we decide of a pattern’s optimality or non-optimality
just knowing how many codes are wasted?

The study of S~,A patterns shed light on these questions, because they are typical
examples of codes waste. Indeed, the decoding process of f 6,~ suppresses bits which
are fixed by the parameter A (those whose ranks do not belong to A.) An f 6,A pattern
shows the simplest decoding procedure that really “does nothing else than wasting
codes”; their behavior is intrinsically linked to the waste of codes phenomenon. Each
deleted bit means that the decoding process does not use a character that may take
two values 0 or I. This implies that two codewords that differ from each other only
in this position are matched to the same image. Consequently, we have two interesting
characteristics:
l the systematic deletion of yn bits in an n bits code, gives 2m antecedents to each

image,
l the waste of code is uniformly spread over all images of fb,A((x : Ix.1 = rz}). This

uniformity is essential to the proof of Theorem 4. When the waste is non-uniformly
distributed, it is difficult to find a tight upper bound for the average complexity over
the above-mentioned set, and to conclude for optimality or non-optimality.

Indeed, by studying these patterns let us see to which extent the codes waste in-
fluences optimality. The main result is given by Theorem 4: f6,~ is still optimal
if 2m codes of length n are decoded into the same image, provided that m/n con-
verges to 0 while n tends to infinity (in the case of a pattern with an uniformly dis-
tributed waste.) With other functions for m, f 6,A is not optimal. It is the case of f6,~
(Property 11). Moreover, ft shows a case for which the number of possible codes
for a given text is linear in the length of the code (Property 6.) Indeed, if (X,JJ) is
matched to x.y and if [xl+ IyI = n, we can find n + 1 tuples (x, y) that yield the same
image by f 1.

4. ~om~sition of optimal patterns

This section deals with composition of patterns. Although our next theorem shows
that composition does not always preserve optimality, two other theorems allow to
prove the optimality of a pattern by decomposing it in simpler patterns. First, we

284 E. Rivals, J.-P. Delahayel Theoretical Computer Science 200 (1998) 261-287

investigate the link between composition and optimality, then exhibit an example of
patterns composition in an optimality proof.

4.1. Results about patterns composition

The first result says that composition does not always preserve optimality. The second
and third theorems conclude that optimal&y is preserved when two injective patterns
or when an injective and an optimal pattern are composed.

Theorem 5. Optimality is not preserved by composition.

Proof, Here is a counterexample. Let NS be the set of non-square integers. NS is
frequent. Consider the pattern fb,Ns, which has been proved optimal in Theorem 4,
and the pattern

9: {OJ}” -+ {OJ}“,

X H w,

where wi = 0 if i ENS and Vi wiz = xi otherwise. g is injective and thus optimal. Let
j denote the composed pattern fe,Ns o g. For all 12 and for all n such that /xl= n, we
have

The following program ou~uts j(x): compute the length of x, store it result in the
variable I, and write l* - I times 0. All together, this program takes K(lxl) bits, plus a
constant number of bits which formalizes the above description. But K(1x1) < log(1x1)
within a constant term, and hence K(j(x)),< log(/xl) + c. Then we have

n +0(n). q

Theorem 6, Composing ~njective and com~utabie patterns preserves o~ti~iity.

Proof. The composition preserves injectiveness and ~omp~tabili~. Cl

Theorem 7. Let f and g be computable patterns, and assume f is injective, then the
following propositions are e~~~valent~
1. g is K-optimal,
2. f 0 g is K-optimal.

Proof. Let us denote by h the composed pattern f o g. We have to show right- and
left-side implications.

E. Rivals, J.-P. Delahayel Theoretical Computer Science 200 (1998) 261-287 285

+: Assume g is K-optimal and let us show that

AvgK(h(x)) = n + o(n).
IXlXl

Let n be an integer. f is injective means it maps each text of {g(x) : Ix\= n} to a

different text. The computability of f implies that the mean complexities of texts in

{g(x) : 1x1 =n} and of texts in {f(g(x)) : [xl= } n are equal within a constant term.

Thus,

Aug KU(&))) - At% &J(x)) = o(n).
Ixl=fl (x(=n

Moreover, we know that g is optimal, thus

(13)

AvgK(g(x)) - n = o(n).
I+

From Eqs. (13) and (14), and thanks to triangular inequality, we obtain

A@7 K&J(x))) - n = o(n).
Ixl=?l

Proof of + is similar to the proof of a. 0

(14)

4.2. An example of decomposition

Sometimes, determining the optimality of a given pattern can be reduced to knowing

the optimality of a simpler pattern. Let us look at an example. Let y be an infinite text

over (0, 1). Assume that bits of y are numbered from 0, then y represents a subset

of N according to the code: i E Y iff yi = 1. We denote this set by Y. Patterns which

perform a logical operation between y and their argument are denoted f+,y, where +

stands for the operation, and are defined just below.

Definition 8. Let y be a string in (0, 1)“) + a symbol which means a logical operator

among V, A, @. Consider the pattern f +,y such that

f +.y: {OJ)* + {OJ)“,

x++x+y.

In the logical operation +, x and y are left justified, i.e., x + y = (Zi)l gig lx/ where for

all iZi=Xi+yi.

Since f a,y is injective and then optimal, we only examine the cases V and A.

Property 12. Let y be a text in {O,l}““; fV,y (respectively f,+,,,,) is an optimal
pattern ifs f 6, y is optimal.

286 E. Rivals, J.-P. Delahayel Theoretical Computer Science 200 (1998) 261-287

Proof. Let x be a text over (0, 1). For any rank i such that i 6 (xl and yi is equal to

1 (resp. to 0), xi V yi (resp. Xi A vi) takes the value 1 (resp. 0.) Hence, to perform

f”,(x) (resp. fA.y(~)) is the same than to change all bits in x whose rank belongs to

Y into 1 (resp. into 0.) A change can always be made by a deletion followed by an

insertion. Now consider the pattern flns,,r (resp. ffnso,r), which inserts bits of value

1 (resp. of value 0) into a text x at all ranks in Y, and moves the other bits to the

right. This pattern is injective (remember it is similar to the pattern g used in the

proof of Theorem 5, which was f lns,,,Ns.) Hence, we have f v,y = fins,,r o f 6,y (resp.

f A,y = finso,y of 6,y.) Hence, from Theorem 7, f v,y (respectively fA,y) is an optimal

pattern iff f 6.y is optimal, i.e., iff Y is a frequent set. 0

5. Conclusion

The Shannon’s theory of information and the Algorithmic Complexity Theory and

the Goldberg-Sipser’s approach have already proposed a definition for the concept

of optimal representation (i.e., representation of minimal length.) All those definitions

rely on an hypothesis that brings information about the objects to represent, respec-

tively: to be distributed according to a probability law, to be a program of a reference

Turing machine, to belong to a language. The new definition of optimal representation

sustained in this paper takes into account informations on the structure of the objects.

A pattern, which is a decoding function and thus “propose” a mean to represent the

objects, is optimal in average if the average Kolmogorov complexity of the codes is

asymptotically equal to the average Kolmogorov complexity of the objects. After intro-

ducing these definitions, Section 2 recovers one the main theorem of the Algorithmic

Complexity Theory which states that without any structural informations, texts are in-

compressible. This section also proves our theory is compatible with the self-delimited

Kolmogorov complexity theory. At last, it is shown that the injectiveness of a pattern

implies its optimality, which enlightens the relation between Goldberg-Sipser’s and

our approaches. Section 3 investigates the average optimality of some basic patterns

and shows by the way that evaluating the information content only in average with the

Kolmogorov complexity (which is uncomputable in general) makes our definition effec-

tive. Section 4 gives several results on the composition of patterns, which in the most

general case does not preserve optimality. Nevertheless, other positive compositions

allow to extend the theory as shown in an example.

We present a novel approach to average optimal representation according to struc-

tural informations on the objects to encode. The set of already studied patterns and

composition results (two aspects that can be investigated further) makes us think that

the optimality of more complex coding schemes could be proved or refuted with our

theory. Although interesting in classical uses of compression (i.e., to save space on

disk or transmission time), this optimality is even more important when compression

algorithms are applied to specific objects analysis, like genetic sequences [9, lo], in or-

der to interpret the conclusions drawn from compression experiments. Thus, we think

E. Rivals, J.-P. Delahayel Theoretical Computer Science 200 (1998) 261-287 287

our work contributes to a better understanding of what is optimal representation and is

useful for the design of practical compression algorithms.

References

[I] T.C. Bell, J.G. Cleary, I.H. Witten, Text Compression, Prentice-Hall, Englewood Cliffs, NJ, 1990.

[2] C.Calude, Information and Randomness: an Algorithmic Perspective, Springer, Berlin, 1994.

[3] T. M. Cover, J.A. Thomas, Information Theory, Wiley Series in Telecommunications, Wiley-

Interscience, New York, 1991.

[4] M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press, Oxford, 1994.

[5] J.-P. Delahaye, Information, complexite et hasard, Hermes, Paris, 1994.

[6] A.V. Goldberg, M. Sipser, Compression and Ranking, SIAM J. Comput. 20 (1991) 524536.

[7] D.A. Huffman, A method for the construction of minimum redundancy codes, in: Proc. Institure of

Electrical and Radio Engineers, vol. 40, 1952, pp. 1098-l 101.

[8] M. Li, P.M.B. Vitanyi, Introduction to Kolmogorov Complexity and Its Applications, 2nd ed., Springer,

Berlin, 1997.

[9] A. Milosavljevic, Discovering sequence similarity by the algorithmic significance, in: Intelligent Systems

for Molecular Biology, AAAI Press, New York, 1993, pp. 284291.

[IO] B. Rivals, M. Dauchet, J-P. Delahaye, 0. Delgrange, Compression and genetic sequences analysis.,

Biochimie 78 (4) (1996) 315-322.

[l l] I?. Rivals, 0. Delgrange, J-P. Delahaye, M. Dauchet, M-O. Delorme, A. Henaut, E. Ollivier, Detection

of significant patterns by compression algorithms: the case of Approximate Tandem Repeats in DNA

sequences, CABIOS 13 (2) (1997) 131-136.

[12] C.E. Shannon, A mathematical theory of communications, Bell System Tech. J. 27 (1948) 379423 and

623-656.

[13] J.A. Storer, Data Compression: Methods and Theory, Computer Sciences Press, Rockville, MD, 1988.

[14] 0. Watanabe, Kolmogorov Complexity and Computational Complexity, Springer, Berlin, 1992.

[15] P.H. Yockey, Information Theory and Molecular Biology, Cambridge Univ. Press, Cambridge, 1992.

