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Determining the distribution of the number of empty urns after a number of balls
have been thrown randomly into the urns is a classical and well understood problem.
We study a generalization: Given a finite alphabet of size σ and a word length q,
what is the distribution of the number X of words (of length q) that do not occur in

a random text of length n+q−1 over the given alphabet? For q = 1, X is the number
Y of empty urns with σ urns and n balls. For q ≥ 2, X is related to the number
Y of empty urns with σq urns and n balls, but the law of X is more complicated
because successive words in the text overlap. We show that, perhaps surprisingly, the
laws of X and Y are not as different as one might expect, but some problems remain
currently open.

1. Introduction

Let X(n,σ,q) be the random number of missing words of length q (also called q-grams)
in a random text of length n+q−1 over an alphabet Σ of size σ. The underlying proba-
bility space is (Σn+q−1,P(Σn+q−1), πn+q−1), where π is the uniform distribution on Σ. Let
Y (n,σ) := X(n,σ,1); this is classically interpreted as the number of empty urns after n

balls have been thrown randomly and independently into σ urns.
It is interesting to compare the laws of X(n,σ,q) and Y (n,σq). In both cases, n q-grams

are randomly drawn. The difference is that Y (n,σq) counts the number of missing q-grams
when they are drawn independently, and X(n,σ,q) counts the number of missing q-grams
when they are drawn from a single text of length n+q−1, such that two successive
q-grams overlap by q − 1 characters.

The law of Y (n,σq) is quite well understood (for example, see [7, 14]), but the law
of X(n,σ,q) has received little attention so far. An algorithmic approach to compute the
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expectation has been published by the authors in [10]. Here we consider an asymptotic
framework, where the number of experiments n and the number of possible words σq

both tend to infinity such that their ratio λ := n/σq remains constant.
Section 2 presents our main results. A recurring theme is that the laws of X(n,σ,q) and

Y (n,σq) do not differ as much as one might expect. In particular, we would like to draw
the reader’s attention to the surprising fact that E[Y (n,σq)] is an excellent approximation
of E[X(n,σ,q)] with a relative error of only O(σ−(q+1)); see Theorem 2.3.

Long proofs that would interrupt the flow of reading are deferred to Section 3. Some
questions remain currently open, and we discuss them in Section 4.

We are aware of two immediate applications of this work. The first one concerns so-
called “monkey tests” [8] for quality assessment of pseudo random number generators
(PRNGs). The PRNG is used to generate many random texts of length n+q−1 over a
given alphabet of size σ. One determines the number of missing q-grams in each text
and compares the resulting empirical distribution function with the true law of X(n,σ,q).
When there are significant deviations, the PRNG is rejected because it failed to model
this aspect of randomness adequately. The name “monkey test” stems from the image of
a monkey typing randomly on a keyboard. Compared to other tests, monkey tests have
the advantage that they can detect dependencies in a q-instance context of the PRNG
that may be overlooked by other tests. In the original paper [8], the variance of X(n,σ,q)

was determined empirically, and the authors conjectured a wrong formula. Our Theorem
2.5 gives the asymptotically correct variance for q = 2

(
σ2 e−2λ (eλ − λ− 1) + O(σ)

)
,

and we conjecture that a similar formula (σq e−2λ · (eλ − λ − 1) + O(σq−1)) is true for
general q. These asymptotic formulas already give good estimates for small values of n
and σ.

The second application concerns biological sequence analysis. DNA sequences can be
seen as texts over a 4-letter alphabet. In [13], the linguistic complexity of a DNA se-
quence of length n+q−1 is defined for fixed q as the number of distinct q-grams in that
sequence, i.e., as 4q −X(n,4,q). Linguistic complexity has been used successfully as a tool
in DNA sequence analysis [1, 13]. High complexity regions of DNA should look essentially
random, whereas low complexity regions should have significantly more missing q-grams
than expected by chance. However, in this setting, a random model that allows different
probabilities for the 4 DNA nucleotides would be more realistic. While no asymptotics
are currently available for this case, the algorithmic approach described in [10] can be
used to obtain exact results in this case.

We emphasize that the problem we study is structurally very different from the well-
understood problem to find the distribution of the number of occurrences of a word
or a set of words (see [11] for a review and further references): To obtain information
about the number of missing words, we have to consider all words and their interactions
simultaneously. This makes the asymptotic analysis much harder: The number of words
under consideration is unbounded in our asymptotic framework, whereas a fixed set of
words is usually assumed when one is interested in the number of occurrences.

To our knowledge, there is currently very little literature on this type of “global” word
statistic, and we hope that the questions left open here will eventually be answered.
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2. Results

In Section 2.1, we lay the foundations for our main results. Using the generating function
approach of Guibas and Odlyzko [4, 5, 6], we establish asymptotic values of the absence
probability of a given word, depending on its periodicity. In Section 2.2, we present new
results on the expected number of missing words, and in Section 2.3, we prove a particular
result about the variance for word length 2. Open problems are addressed in Section 4.

2.1. Absence Probabilities
Fix a word length q ≥ 1 and an alphabet Σ of size σ ≥ 2. A q-gram is a word of length
q, i.e., an element of Σq.

Definition. Let Q be a q-gram. Let aQ
m be the absence probability of Q in a text of

length m, i.e., the probability that Q does not occur in a random text of length m.

It has been established previously (see Lemma 2.1) that the absence probability of a
q-gram depends on its periodicity. Therefore the following definitions are useful.

Definition. Let Q = Q[0] . . .Q[q − 1] be a q-gram over some alphabet.

(i) Its autocorrelation vector cQ := (cQ
0 , . . . , cQ

q−1) is defined as follows: For i = 0, . . . , q−1,
set cQ

i := 1 iff the pattern overlaps itself if slided i positions to the right, i.e., iff
Q[i+ j] = Q[j] for all j = 0, . . . , (q− i− 1). Otherwise, set cQ

i := 0. Note that by this
definition always cQ

0 = 1.
(ii) The corresponding autocorrelation polynomial CQ(z) is obtained by taking the cQ

i as
coefficients: CQ(z) := cQ

0 + cQ
1 z + cQ

2 z2 + · · ·+ cQ
q−1z

q−1.
(iii) The positions i for which cQ

i = 1 are called periods of Q; every word has the trivial
period 0.

(iv) If it exists, the smallest p > 0 for which cQ
p = 1 is called the basic period of Q. If it

does not exist, Q is said to be period-free.

As an example, consider the 11-gram Q=ABRACADABRA. Its periods are 0, 7, and 10.
Therefore cQ = (10000001001) and CQ(z) = 1 + z7 + z10.

The absence probability sequence aQ
m for increasing text length m is now obtained via

generating functions.

Lemma 2.1 (Guibas & Odlyzko [6]). Let Q be a q-gram over some alphabet of size
σ; let CQ(z) be its autocorrelation polynomial. Then the generating function AQ(z) of
the absence probability sequence aQ

m is given by

AQ(z) =
CQ

(
z
σ

)
(

z
σ

)q + (1 − z) · CQ
(

z
σ

) .
In other words, aQ

m = [zm]AQ(z), the Taylor coefficient of zm in AQ(z).

For word length q = 2, aQ
n+q−1 can be obtained explicitly from Lemma 2.1.
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Theorem 2.1 (Absence probabilities for two-letter words). A 2-gram Q is either
period-free, i.e., of the form ab with a �= b, or periodic, i.e., of the form aa.

(i) If Q is period-free and the alphabet size is σ = 2, then

aQ
n+1 =

n + 2
2

· 2−n. (1)

If Q is period-free and σ ≥ 3, define

s(σ) :=
√

σ2 − 4, (2)

β0(σ) :=
σ

2
(σ − s(σ)) , γ0(σ) :=

σ

2
(σ + s(σ)) . (3)

Then

aQ
n+1 =

σ2 + σ s(σ) − 2
2 σ s(σ)

· β0(σ)−n − σ2 − σ s(σ) − 2
2 σ s(σ)

· γ0(σ)−n. (4)

(ii) If Q is periodic, define for all σ ≥ 2

r(σ) :=

√
σ + 3
σ − 1

, (5)

β1(σ) :=
σ

2
(r(σ) − 1) , γ1(σ) := −σ

2
(r(σ) + 1) . (6)

Then

aQ
n+1 =

2
σ(σ − 1)

· r(σ) + 1
r(σ) (r(σ) − 1)2

· β1(σ)−n

+
2

σ(σ − 1)
· r(σ) − 1
r(σ) (r(σ) + 1)2

· γ1(σ)−n. (7)

For word length q ≥ 3, the following theorem provides an asymptotic value of aQ
n+q−1,

depending on the basic period of Q.

Theorem 2.2 (Asymptotic absence probabilities). Let Q be a q-gram with q ≥ 3.
Let n, σ → ∞ such that λ := n

σq remains constant.

(i) If Q is period-free, then

aQ
n+q−1 = e−λ · (1 − λ (q − 1/2)σ−q + O(σ−2q)

)
. (8)

(ii) If Q has a basic period p, then

aQ
n+q−1 = e−λ ·

(
1 + λσ−p + O(σ−(p+1))

)
. (9)

One consequence of Theorem 2.2 is that for sufficiently large σ, the absence probability
is slightly lower than e−λ for period-free words, and slightly higher for words with periods.
Stated differently, self-overlapping words tend to appear later in a random text than
period-free words. This is also a consequence of the stronger results proved in [2], where
bounds on the difference of absence probabilities aQ

n − aQ′
n of two words Q, Q′ with

different period sets are obtained.
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2.2. Expected Number of Missing Words
This section contains our results on the expected number of missing words. We provide
an exact formula for q = 2 and asymptotic formulas for q ≥ 3, where we assume that q

is fixed, and n and σ tend towards infinity such that the ratio λ := n
σq remains constant.

From the following theorem (Theorem 2.3), we conclude the non-obvious fact that
asymptotically E[X(n,σ,q)] = E[Y (n,σq)] ≈ σq e−λ. In other words, the expected fraction
of missing q-grams is asymptotically e−λ, whether one considers n independently gen-
erated q-grams (equivalently, n independent throws at σq urns), or n overlapping and
hence dependent q-grams from a single text of length n+q−1. But more is true: In the
asymptotic expansions of E[Y (n,σq)] and E[X(n,σ,q)], all of the first q+1 terms agree
(compare Equation (10), replacing σ by σq, with Equation (13)). When E[X(n,σ,q)] is
approximated by (10), the relative error is only of order O(σ−(q+1)).

Theorem 2.4 and Corollary 2.1 contain a more detailed comparison for two-letter words.

Theorem 2.3 (Expected number of missing words).

(i) For word length q = 1, let λ := n/σ. Then

E[Y (n,σ)] = E[X(n,σ,1)] = σ ·
(
1 − 1

σ

)n

= e−λ ·
(
σ − λ

2
+ O(σ−1)

)
. (10)

(ii) For word length q = 2 and alphabet size σ = 2,

E[X(n,2,2)] =
(

1
2

+
1√
5

)
·
(√

5 − 1
)−n

+
(

1
2
− 1√

5

)
·
(
−√

5 − 1
)−n

+ (n+ 1) · 2−n. (11)

For word length q = 2 and alphabet size σ ≥ 3,

E[X(n,σ,2)] =
(σ − 1)(σ2 + σ s(σ) − 2)

2 s(σ)
· β0(σ)−n

+
−(σ − 1)(σ2 − σ s(σ) − 2)

2 s(σ)
· γ0(σ)−n

+
2

σ − 1
· r(σ) + 1
r(σ) (r(σ) − 1)2

· β1(σ)−n

+
2

σ − 1
· r(σ) − 1
r(σ) (r(σ) + 1)2

· γ1(σ)−n, (12)

where s(σ), β0(σ), γ0(σ), r(σ), β1(σ), and γ1(σ) are defined in Theorem 2.1, Equa-
tions (2), (3), (5), and (6), respectively. An asymptotic expansion of E[X(n,σ,2)] is
given in Theorem 2.4.

(iii) For word length q ≥ 3, let λ := n
σq .

E[X(n,σ,q)] = e−λ ·
(
σq − λ

2
+ O(σ−1)

)
. (13)

Theorem 2.4 (Comparison for two-letter words). Let X := X(n,σ,2) be the num-
ber of missing words, and let Y := Y (n,σ2) be the number of empty urns. Let λ := n

σ2 .
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Then

E[X ] = e−λ ·
(
σ2 − λ

2
+

λ (λ − 2)
2 σ

+
λ (4λ2 − 33λ+ 40)

24 σ2
+ O(σ−3)

)
,

E[Y ] = e−λ ·
(
σ2 − λ

2
+

3λ2 − 8λ
24 σ2

+ O(σ−4)
)
.

Proof. The formula for E[Y ] is an asymptotic expansion in σ−1 of (10) with alphabet
size σ2 in place of σ and n = λσ2. Likewise, the formula for E[X ] is an asymptotic
expansion in σ−1 of (12).

Corollary 2.1.

E[X ]




<

=
>


E[Y ] for λ




<

=
>


 2 + ε(σ), (14)

where for sufficiently large σ, 0 ≤ ε(σ) → 0 for σ → ∞.

Proof. E[X ] and E[Y ] are equal up to the constant term and first differ in the σ−1-term,
which has the coefficient c(λ) := λ(λ−2)

2 in E[X ], and is zero in E[Y ]. c(λ) is negative for
0 < λ < 2 and positive for λ > 2. It vanishes for λ = 2; in this case the coefficient for the
σ−2-term is − 5

6 for E[X ] and − 1
6 for E[Y ]. Hence for sufficiently large σ, E[X ] < E[Y ]

for λ = 2, and the point λ where E[X ] = E[Y ] is at 2 + ε(σ), where ε(σ) has the stated
properties.

2.3. Variance of the Number of Missing Words
We restate the known variance for word length q = 1, and prove an asymptotic formula
for the variance when q = 2. The difficulties that arise when one attempts to compute
the variance for longer words are described in Section 4. However, we conjecture that in
general Var[X(n,σ,q)] = e−2λ (eλ − 1 − λ)σq + O(σq−1).

Theorem 2.5 (Variance of the number of missing words).

(i) For word length q = 1, let λ := n/σ. Then

Var[Y (n,σ)] = σ(σ − 1)
(
1 − 2

σ

)n

+ σ

(
1 − 1

σ

)n

− σ2

(
1 − 1

σ

)2n

= e−2λ ·
(
(eλ − 1 − λ)σ +

(
3λ2

2
− λeλ

2

))
+ O(σ−1).

(ii) For q = 2, let λ := n/σ2. Then

Var[X(n,σ,2)] = e−2λ ·
(

(eλ − 1 − λ)σ2 + λ2 σ +
(
λ3

3
+

λ2

2
− λ eλ

2

))
+ O(σ−1).

Corollary 2.2. The variance of the number of missing 2-grams in a text of length n+1
is asymptotically equal to, but for sufficiently large alphabet sizes always larger than the
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variance of the number of empty urns after σ2 balls have been randomly thrown into n

urns.

Proof. The first-order terms of Var[X(n,σ,2)] and Var[Y (n,σ2)] are equal (e−2λ · (eλ −
1− λ)σ2). The coefficient of the σ-term of Var[X(n,σ,2)] is λ2 > 0, whereas it is zero for
Var[Y (n,σ2)].

3. Proofs

3.1. Absence Probabilities
Proof of Theorem 2.1.

(i) For period-free 2-grams Q, the generating function of the absence probabilities is

AQ(z) =
σ2

z2 − σ2 z + σ2
.

For σ = 2, this is AQ(z) = 4
(z−2)2 , and therefore by (n+1)-fold differentiation,

aQ
n+1 = [zn+1]AQ(z) =

(AQ)(n+1)(0)
(n+ 1)!

=
n+ 2

2
· 2−n,

as claimed. For σ ≥ 3, AQ(z) has two distinct poles, namely β0(σ) and γ0(σ), as
defined in (3). Then

AQ(z) =
B0(σ)

z − β0(σ)
+

−B0(σ)
z − γ0(σ)

,

where B0(σ) = −σ
s(σ) , and s(σ) was defined in (2). Again by (n+1)-fold differentiation,

one obtains

aQ
n+1 =

(AQ)(n+1)(0)
(n + 1)!

=
−B0(σ)
β0(σ)2

· β0(σ)−n +
B0(σ)
γ0(σ)2

· γ0(σ)−n,

which is exactly (4).
(ii) For a periodic 2-gram Q, one has

AQ(z) =
1 +

(
z
σ

)
(

z
σ

)2 + (1 − z) · (1 +
(

z
σ

)
)

=
σ

1−σ z + σ2

1−σ

z2 + σz + σ2

1−σ

.

For all σ ≥ 2, AQ(z) has two distinct poles; these are β1(σ) and γ1(σ), as defined in
(6). One obtains

AQ(z) =
B1(σ)

z − β1(σ)
+

C1(σ)
z − γ1(σ)

,

where

B1(σ) =
−σ

2 (σ − 1)
·
(
1 +

1
r(σ)

)
, C1(σ) =

−σ

2 (σ − 1)
·
(
1 − 1

r(σ)

)
,

and r(σ) was defined in (5). As above, one obtains

aQ
n+1 =

−B1(σ)
β1(σ)2

· β1(σ)−n +
−C1(σ)
γ1(σ)2

· γ1(σ)−n,
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which is (7). This completes the proof.

Proof of Theorem 2.2. The general idea is to obtain a partial fraction decomposition
of AQ(z). We show that for q ≥ 3, the denominator DQ(z) := (z/σ)q +(1− z)CQ(z) has
a unique and simple root β of smallest absolute value. Furthermore β is slightly larger
than 1. These statements are proved in Lemma 3.1 below.

Then it follows (see e.g. [3, Section 7.3]) that

aQ
n+q−1 = [zn+q−1]AQ(z) =

C(β/σ)
−(DQ)′(β) · βq

· β−n + rn,

where rn is a sum of terms of the form c · γ−n with γ larger than and bounded away
from β, and c grows polynomially with σ. Therefore rn can be neglected in the following
asymptotic expansions.

(i) For period-free words Q, CQ(z) ≡ 1, and DQ(z) = (z/σ)q +1− z. With λ = n/σq, it
is sufficient to show that

1
−(DQ)′(β) · βq

· β−n = e−λ · (1 − λ(q − 1/2)σ−q + O(σ−2q)
)
. (15)

This is proved below.
(ii) For wordsQ with basic period p, the autocorrelation polynomial has the formCQ(z) =

1 + zp+(possibly higher terms), and we have DQ(z) = (z/σ)q + (1 − z)CQ(z). It is
sufficient to show that

CQ(β)
−(DQ)′(β) · βq

· β−n = e−λ ·
(
1 − λσ−p + O(σ−(p+1))

)
, (16)

which is proved below.

Proof of Equation (15). The first step is to show that

β = 1 + σ−q + qσ−2q + O(σ−3q).

We show constructively that β can be computed by fixed point iteration. By Lemma 3.1,
β ∈ [1, 2]. We rewrite DQ(z) = 0 as the fixed point equation z = 1 + σ−qzq =: f(z).
Then f ′(z) = qσ−qzq−1. In the interval I := [1, 2], 0 < f ′(z) ≤ q 2q−1 σ−q =: ρσ. Thus
ρσ = O(σ−q) < 1 for sufficiently large σ. Furthermore f is strictly increasing on I, and
1 < 1 + σ−q = f(1) < f(2) = 1 + (2/σ)q < 2. Therefore, f is a contraction on I with
contraction factor ρσ = O(σ−q). By Banach’s Fixed Point Theorem (the contraction
mapping principle), it follows that the solution of g(z) = 0 can be obtained by iterating
f , starting with z0 = 1. The error decreases in each step by a factor of ρσ, and is at most
1 in the beginning. For z3 = f(f(f(1))), the error is at most O(σ−3q), and we find

β = z3 + O(σ−3q) = 1 + σ−q + q σ−2q + O(σ−3q),

as claimed.
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It remains to evaluate 1
−(DQ)′(β)·βq · β−n. From (DQ)′(z) = qσ−qzq−1 − 1, one can see

that

−(DQ)′(β) = 1 − q σ−q − q(q − 1)σ−2q + O(σ−3q),

βq = 1 + q σ−q +
(
q(q − 1)

2
+ q2

)
σ−2q + O(σ−3q),

β−n = e−λ · (1 − λ (q − 1/2)σ−q + O(σ−2q)
)
;

the latter because n = λσq . The correctness of (15) follows.

Proof of Equation (16). The proof is similar to the previous one. The first step is to
show that

β = 1 + σ−q + σ−(q+p) + O(σ−(q+p+1));

this is done by rewriting DQ(z) = 0 as the fixed point equation

z = 1 + σ−q zq

CQ(z/σ)
=: f(z).

We show that f(z) is a contraction on the interval I := [1, 2] for sufficiently large σ

with contraction factor ρσ = O(σ−q) for large σ. Then f(f(1)) is an approximation to β

with error O(σ−2q). Note that f is increasing on I, since CQ(z/σ)/zq is decreasing for
z ≥ 1. This also establishes f ′(z) > 0 on I. It is furthermore clear that f(1) > 1. Also,
f(2) = 1 + 2q

σq c(2/σ) ≤ 1 + 2q

σq , as CQ(z/σ) ≥ 1 for z ≥ 0. Hence f(2) < 2 for sufficiently
large σ, and f maps I to a subinterval of I. To show that f ′ ≤ ρσ < 1 on I, note that

f ′(z) = σ−q · q z
q−1 CQ

(
z
σ

)− 1
σ · (CQ)′

(
z
σ

)
zq

CQ
(

z
σ

)2
= σ−q ·O(1) = O(σ−q),

as z = O(1), CQ
(

z
σ

)
= O(1), and (CQ)′

(
z
σ

)
= O(σ−(p−1)). Then one computes f(f(1)) =

1 + σ−q − σ−(q+p) + O(σ−(q+p+1)), which is the claimed approximation for β.
It remains to prove that (16) holds with this value of β, which involves complex but

straightforward algebra; the details are omitted at this point.

Lemma 3.1 (Smallest Root of DQ(z)). Let q ≥ 3 and σ ≥ 3. Let Q be any q-gram
over an alphabet of size σ. Then the denominator polynomial of AQ(z), i.e., DQ(z) :=
(z/σ)q + (1 − z)CQ(z), has a unique simple real root β of smallest absolute value, and
the universal bounds 1 < β < 1.0631 hold for all σ ≥ 3 and q ≥ 3. All other roots γ fulfill
|γ| > 1.6993.

We remark that this is a stronger version of Lemma 3 from [4] (where a different
notation is used); we provide explicit and universal bounds for β.

Proof. Here is a heuristic argument first: If we show that the roots of CQ(z) have large
absolute values, then (1− z)CQ(z) has indeed a unique simple root of smallest absolute
value, namely z = 1. At z = 1, (z/σ)q is a small quantity and should therefore have
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little effect when added to (1− z)CQ(z). Therefore DQ(z) should have a root β with the
stated properties.

This argument can be made precise with a special case of Rouché’s Theorem (proved
in any textbook on complex analysis), applied to the functions f1(z) := (1 − z)CQ(z)
and f2(z) := (z/σ)q such that f1(z) + f2(z) = DQ(z):
Special case of Rouché’s Theorem. Let f1 and f2 be analytic functions on the complex

plane. Let K be a disc around the origin, and let ∂K be its boundary. If |f2| < |f1| on ∂K, then

f1 and f1 + f2 have the same number of roots inside K.

Let Kδ be the disc |z| ≤ σδ in the complex plane for 0 < δ < 1. Note that all Kδ

contain the unit disc. We distinguish two cases, depending on the value of c1 of the
autocorrelation cQ. In both cases, we prove that there is an interval ∆ ⊂ (0, 1) of values
of δ where the following hold: (i) |CQ(z)| is bounded away from zero in Kδ. Hence,
f1(z) := (1 − z)CQ(z) has a unique simple root inside Kδ, namely z = 1. (ii) On ∂Kδ,
(|z|/σ)q = |f2(z)| < |f1(z)|, and Rouché’s Theorem applies. Then we show that the
intersection of the ∆ sets from both cases is nonempty, and derive a bound for β.

Case c1 = 1. Here Q consists of the repetition of a single letter. Hence cj = 1 for all
j = 0, . . . , q − 1 and CQ(z/σ) = 1−(z/σ)q

1−z/σ . It follows that in Kδ

∣∣∣CQ
( z
σ

)∣∣∣ =
∣∣1 − ( z

σ

)q∣∣
|1 − z/σ| ≥ 1 − σ−q|z|q

1 + σ |z| ≥ 1 − σq(δ−1)

1 + σδ−1
≥ 1 − 33(δ−1)

1 + 3δ−1
,

which proves (i). To prove (ii), note that on ∂Kδ,

|f1(z)| = |1 − z| ·
∣∣∣CQ

( z
σ

)∣∣∣ ≥ (3δ − 1) · 1 − 33(δ−1)

1 + 3δ−1
,

and

|f2(z)| = (|z|/σ)q = σq(δ−1) ≤ 33(δ−1).

One verifies numerically that for δ ∈ ∆1 := [0.05568, 0.73299] the inequality |f2(z)| <
|f1(z)| holds on ∂Kδ.

Case c1 = 0. In this case CQ(z/σ) = 1 +
∑q−1

j=2 cQ
j · (z/σ)j with cQ

j ∈ {0, 1}. Therefore
in Kδ, ∣∣∣CQ

( z
σ

)∣∣∣ ≥ 1 −
q−1∑
j=2

( |z|
σ

)j

≥ 1 −
∞∑

j=2

3j(δ−1) = 2 + 3δ−1 − 1
1 − 3δ−1

,

proving (i). To prove (ii), note that on ∂Kδ,

|f1(z)| = |1 − z| ·
∣∣∣CQ

( z
σ

)∣∣∣ ≥ (3δ − 1) ·
(
2 + 3δ−1 − 1

1 − 3δ−1

)
,

and as before |f2(z)| ≤ 33(δ−1). In this case one verifies numerically that for δ ∈ ∆2 :=
[0.04741, 0.48265] indeed |f2(z)| < |f1(z)| on ∂Kδ.

The intersection ∆ := ∆1∩∆2 = [0.05568, 0.48265] is non-empty. Taking δ = 0.05568, we
obtain that |β| ≤ 1.0631. Furthermore β is real, and it is easy to see that β > 1. Taking
δ = 0.48265, we see that all other roots γ must lie outside the circle |z| = 3δ = 1.6993.
This completes the proof.
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3.2. Expectation

Proof of Theorem 2.3.

(i) For word length q = 1, the absence probability of each of the σ words is (1 − 1/σ)n.
Equation (10) and its asymptotic expansion in σ−1 are immediate.

(ii) For word length q = 2, there are σ periodic words Q and σ2 − σ period-free words
Q′. For σ = 2, E[X(n,2,2)] is therefore 2 · aQ

n+1 (as given by (7) for σ=2) plus 2 · aQ′
n+1

(as given by (1)). The sum is exactly (11). For σ ≥ 3, E[X(n,σ,2)] is σ · aQ
n+1 (as given

by (7)) plus (σ2 − σ) · aQ′
n+1 (as given by (4)). This sum is (12).

(iii) For word length q ≥ 3, careful bookkeeping is required. Fix q, let Np(σ) be the
number of q-grams with basic period p (1 ≤ p < q), and let Nq(σ) be the number
of period-free q-grams. Now

∑q
p=1 Np(σ) = σq . We show that for each p = 1, . . . , q,

Np(σ) = σp − O(σp−1): There are exactly σ words with period 1, namely the words
that consist of the repetition of a single letter. For p > 1, a word has (not necessarily
basic) period p iff the word consists of repetitions of its first p letters. Therefore,
there are σp possible words with period p. If in addition p is to be the basic period,
the first p letters are further constrained by the requirement that no smaller number
p′ < p must be a period. Therefore, the number of words with basic period p′ < p

and additional period p must be subtracted from σp. By induction, this number is at
most O(σp−1).
Set an,p(σ) := aQ

n+q−1 (see (9)), where Q is a q-gram over an alphabet of size σ with
basic period p, and set an,q(σ) := aQ

n+q−1 (see (8)) for a period-free q-gram. Then

E[X(n,σ,q)] =
q∑

p=1

Np(σ) · an,p(σ)

=
q−1∑
p=1

Np(σ) · e−λ ·
(
1 + λσ−p + O(σ−(p+1))

)

+ Nq(σ) · e−λ · (1 − λ (q − 1/2)σ−q + O(σ−2q)
)

= e−λ ·
[(

q∑
p=1

Np(σ)

)
+

q−1∑
p=1

Np(σ) (λσ−p + O(σ−(p+1)))

]

+ e−λ ·Nq(σ) · (λ (q − 1/2)σ−q + O(σ−2q))

= e−λ · (σq + (q − 1)λ + O(σ−1) − (q − 1/2)λ+ O(σ−q)
)

= e−λ · (σq − λ/2 + O(1/σ)) .

This completes the proof of Theorem 2.3.

3.3. Variance

In order to prove Theorem 2.5, we need a generalization of the absence probabilities of
one word to both of two words.
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Definition. Let Q �= R be q-grams. Let aQR
m be the absence probability of both Q and

R in a text of length m, i.e., the probability that both Q and R do not occur in a random
text of length m.

Definition. Let Q and R be q-grams. Their correlation vector cQR = (cQR
0 , . . . , cQR

q−1) ∈
{0, 1}q is defined by

cQR
i := 1 iff Q[i + j] = R[j] (j = 1, . . . , (q − i)).

The correlation polynomial CQR(z) is defined by CQR(z) :=
∑q−1

i=0 cQR
i zi.

In general cQR �= cRQ. By definition, the autocorrelation of Q is cQQ. For two words,
there are four correlation polynomials to consider. These are conveniently summarized

in a 2× 2 correlation matrix
(
CQQ(z) CRQ(z)
CQR(z) CRR(z)

)
.

Lemma 3.2. Let Q �= R be q-grams. Define

KQR(z) := CQQ(z)CRR(z)− CQR(z)CRQ(z), (17)

κQR(z) := (CQQ(z) + CRR(z))− (CQR(z) + CRQ(z)). (18)

Then the generating function AQR(z), such that aQR
m = [zm]AQR(z), is given by

AQR(z) =
KQR

(
z
σ

)
(1 − z)KQR

(
z
σ

)
+ σ−q zq κQR

(
z
σ

) . (19)

As expected, AQR(z) remains unchanged when Q and R are exchanged, i.e., AQR(z) =
ARQ(z). The same is true for KQR(z) and κQR(z). A proof of Lemma 3.2 can be found,
for example, in [6]. Simple proofs from first principles that include more complicated
random text models for the absence probabilities of one or several words are furthermore
given in [9].

Proof of Theorem 2.5. The variance of X(n,σ,2) can be expressed as

Var[X(n,σ,2)] = E[X(n,σ,2) (X(n,σ,2) − 1)] + E[X(n,σ,2)] − (E[X(n,σ,2)])2. (20)

An asymptotic expansion of E[X(n,σ,2)] up to O(σ−3) for λ = n/σ2 is given in Theorem
2.4. From this, one obtains

(E[X(n,σ,2)])2 = e−2 λ ·
(
σ4 − λσ2 + λ(λ− 2)σ + λ

(
λ2

3
− 5λ

2
+

10
3

))
+O(σ−1). (21)

It remains to find an asymptotic expression for E[X(n,σ,2) (X(n,σ,2)−1)] =
∑

Q�=R aQ,R
n+1,

where the sum extends over all σ2 (σ2 − 1) pairs of unequal 2-grams.
Without loss of generality, we may assume that σ ≥ 4. There are six different types

of correlation matrices for 2-grams. (We treat correlation matrices that arise from each
other by flipping rows and columns as identical, because AQR(z) is unaffected by this
operation).
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Table 1 The six types of correlation matrices for pairs of 2-grams. O(·) is a shortcut for O(σ−1). See
the text of the proof of Theorem 2.5 for further information.

Type 1: M1 =

�
1 0
0 1

�
,

K1(z) = 1,
κ1(z) = 2,

β1 = 1 + 2 σ−2 + 8 σ−4 + 40 σ−6 + O(σ−8).
N1 := σ(σ − 1)2(σ − 2) pairs share M1,

being σ(σ − 1)(σ − 2)(σ − 3) pairs of type (AB, CD),
and σ(σ − 1)(σ − 2) pairs each of types (AB, AC) and (AB, CB).

V1 = e−2λ · �σ4 − 4σ3 + (5−6λ)σ2 + (−2 + 24 λ)σ +
�
4 − 170

3
λ + 18λ2

��
+ O(·).

Type 2: M2 =

�
1 + z 0

0 1

�
,

K2(z) = 1 + z,
κ2(z) = 2 + z,

β2 = 1 + 2 σ−2 − σ−3 + 9 σ−4 − 11 σ−5 + O(σ−6).
N2 := 2σ(σ − 1)(σ − 2) pairs share M2,

being σ(σ − 1)(σ − 2) pairs each of types (AA,BC) and (AB,CC).
V2 = e−2 λ · �2σ3 + (2λ−6)σ2 + (λ2−20λ+4)σ +

�
1
3
λ3−17λ2+64λ−2

��
+ O(·).

Type 3: M3 =

�
1 z
0 1

�
,

K3(z) = 1,
κ3(z) = 2 − z,

β3 = 1 + 2 σ−2 − σ−3 + 8 σ−4 − 10 σ−5 + O(σ−6).
N3 := 2σ(σ − 1)(σ − 2) pairs share M3,

being σ(σ − 1)(σ − 2) pairs each of types (AB,CA) and (AB,BC).
V3 = e−2 λ · �2σ3 + (2λ−6)σ2 + (λ2−18λ+4)σ +

�
1
3
λ3−15λ2+56λ−2

��
+ O(·).

Type 4: M4 =

�
1 0
z 1 + z

�
,

K4(z) = 1 + z,
κ4(z) = 2,

β4 = 1 + 2 σ−2 − 2 σ−3 + 10 σ−4 − 22 σ−5 + O(σ−6).
N4 := 4σ(σ − 1) pairs share M4,

being σ(σ − 1) pairs each of types (AB,BB), (AA,AB), (AA,BA), and (AB,AA).
V4 = e−2 λ · �4σ2 + (8λ−4)σ +

�
8λ2−40λ

��
+ O(·).

Type 5: M5 =

�
1 + z 0

0 1 + z

�
,

K5(z) = (1 + z)2,
κ5(z) = 2 + 2z,

β5 = 1 + 2 σ−2 − 2 σ−3 + 10 σ−4 − 22 σ−5 + O(σ−6).
N5 := σ(σ − 1) pairs share M5, being those of type (AA,BB).

V5 = e−2 λ · �σ2 + (2λ−1)σ +
�
2λ2−10λ

��
+ O(·).

Type 6: M6 =

�
1 z
z 1

�
,

K6(z) = 1 − z2,
κ6(z) = 2 − 2z,

β6 = 1 + 2 σ−2 − 2 σ−3 + 10 σ−4 − 22 σ−5 + O(σ−6).
N6 := σ(σ − 1) pairs share M6, being those of type (AB,BA).

V6 = e−2 λ · �σ2 + (2λ−1)σ +
�
2λ2−10λ

��
+ O(·).
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In Table 1, we give an overview over all six types. For each type j = 1, . . . , 6, we
show the correlation matrix Mj, the functions Kj(z) (see (17)) and κj(z) (see (18)),
an asymptotic expansion of the unique and simple pole βj of smallest absolute value of
Aj(z) (defined by (19) in terms of Kj(z) and κj(z)). The values of βj are accurate up
to O(σ−6). We list the different types of 2-gram pairs for each matrix, and the total
number Nj of such 2-gram pairs. Finally, we show the total contribution Vj of a word
pair of type j to E[X(n,σ,2) (X(n,σ,2) − 1)], accurate up to O(σ−1). If we define Dj(z) :=
(1−z)Kj

(
z
σ

)
+σ−q zq κj

(
z
σ

)
(the denominator polynomial of Aj(z)), then asymptotically

Vj = Nj · Kj(βj/σ)
−D′

j(βj)β2
j

· β−λσ2

j .

Summing over all six cases, we obtain

E[X(n,σ,2) (X(n,σ,2) − 1)] = V1 + V2 + V3 + V4 + V5 + V6

= e−2 λ ·
(
σ4 − (1 + 2λ)σ2 + 2λ(λ− 1)σ + λ

(
2λ2

3
− 2λ+

10
3

))
+ O(σ−1). (22)

Using (20) and the values from (21), (22), and Theorem 2.4, we obtain the stated asymp-
totic expansion of Var[X(n,σ,2)].

4. Open Problems

We have proved a fairly general result about the expected number of missing words
(Theorem 2.3) and a special result about the variance for word length q = 2 (Theorem
2.5). For general q ≥ 3, we conjecture that

Var[X(n,σ,q)] = σq e−2λ (eλ − λ− 1) + O(σq−1).

For a proof using (20) and (13), the missing piece is to show that

E[X(n,σ,q) (X(n,σ,q) − 1)] = e−2λ · (σ2q − (2λ + 1)σq + O(σq−1)
)
.

The problem is that the structure of the 2 × 2, and more generally k × k, correlation
matrices is not yet fully understood. This is in contrast to single word autocorrelations
whose structure has been characterized in [5]. Further results on the combinatorics and on
the enumeration of autocorrelations have appeared in [12]. No such results are available
for two or more words. Hence, we would like to pose the following problem.

Problem. Characterize and efficiently enumerate 2 × 2, and more generally, k × k

matrices of correlation vectors between k pairwise different q-grams, and find the number
of such matrices. Compute the number of k-tuples of words that share a given correlation
matrix.

The law of the number of empty urns Y (n,σ) can be given explicitly in terms of the
Stirling numbers of the second kind. Furthermore, a central limit theorem for Y (n,σ) was
proved in [14]. We conjecture that X(n,σ,q), properly normalized, also tends to a normal
law in the limit.
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Conjecture. Let q ≥ 1 be fixed, and let n and σ tend towards infinity such that the
ratio λ := n

σq remains constant. Then

X(n,σ,q) − σq e−λ√
e−2λ (eλ − (1 + λ))σq

L→ N (0, 1).

This could be proved, for example, by showing that all moments of X(n,σ,q) and Y (n,σq)

are asymptotically equal. However, this requires first a solution of the above mentioned
problem.
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