Exact and Efficient Computation of
the Expected Number of
Missing and Common Words in Random Texts

Sven Rahmann! and Eric Rivals?

! Theoretische Bioinformatik (TBI)
Deutsches Krebsforschungszentrum (DKFZ),
Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany,
S.Rahmann@dkfz-heidelberg.de

2 LILR.M.M.
161 rue Ada, F-34392 Montpellier Cedex 5, France,
rivals@lirmm.fr

Abstract. The number of missing words (NMW) of length ¢ in a text,
and the number of common words (NCW) of two texts are useful text
statistics. Knowing the distribution of the NMW in a random text is
essential for the construction of so-called monkey tests for pseudoran-
dom number generators. Knowledge of the distribution of the NCW of
two independent random texts is useful for the average case analysis of
a family of fast pattern matching algorithms, namely those which use a
technique called g-gram filtration. Despite these important applications,
we are not aware of any exact studies of these text statistics. We pro-
pose an efficient method to compute their expected values exactly. The
difficulty of the computation lies in the strong dependence of successive
words, as they overlap by (¢ — 1) characters. Our method is based on the
enumeration of all string autocorrelations of length ¢, i.e., of the ways
a word of length ¢ can overlap itself. For this, we present the first effi-
cient algorithm. Furthermore, by assuming the words are independent,
we obtain very simple approximation formulas, which are shown to be
surprisingly good when compared to the exact values.

1 Introduction

We consider random texts. A text of length n is a string of n characters from a
given alphabet X of size 0. Randomness in this article refers to the symmetric
Bernoulli model, meaning that the probability to encounter any character at any
position of the text is 1/o, independently of the other text positions. As soon as
the text length has been fixed to n, every text has the same chance of occurring,
namely o~ ™. A word of length ¢, also called a g-gram, is a substring of length gq.
If n > ¢, we find exactly (n — ¢ + 1) (overlapping) g-grams in a text of length
n; they end at positions ¢, ¢ + 1, ..., n. However, not all of these need to be
different.

We consider two applications that motivate why it is interesting to determine
the distribution, and hence especially the expectation, of the number of missing
words (NMW) in a random text, and of the number of common words (NCW)
of two independent random texts.

Missing Words and Monkey Tests. Knowing the distribution of the
NMW in a random text allows the construction of so-called monkey tests for
pseudorandom number generators (PRNGs).

Assume we are given a subroutine that supposedly produces instances of
a random variable U uniformly distributed in the interval [0,1], but we are
unsure of the quality of this PRNG, i.e., whether the produced sequences of
pseudorandom numbers indeed share properties with truly random sequences.
In this case one usually runs a series of empirical tests, a list of which can be
found in Knuth’s comprehensive work [9].

One set of tests called monkey tests was proposed by Marsaglia and Zaman
[10]. One variant works as follows: Each call to the PRNG is used to create
a pseudorandom bit (e.g., the most or least significant bit of U), and a text
of length n is created by concatenating the bits from successive calls to the
PRNG. (Imagine a monkey typing randomly on a 0-1-keyboard; hence the name
monkey test.) One counts how many of the 2? possible g-grams are missing
from the resulting text, and compares this number to the expected NMW in a
truly random bit sequence. The PRNG should be rejected if these numbers differ
significantly.

The advantage of monkey tests is that, for each g-gram, only one bit needs to
be stored to indicate whether the g-gram has occurred in the text or not. Other
tests, like the well-known chi-square test on the frequencies of g-grams, require
the storage of an integer (the number of occurrences) for every g-gram. Hence
monkey tests allow to choose ¢ relatively large, such as ¢ = 33, needing 232 bits
or 1 GB of memory. In comparison, if one runs the chi-square test with 1 GB of
memory, one is restricted to ¢ < 28 (assuming 4 bytes per integer). Hence the
monkey test allows to detect possible deficiencies of the PRNG within a larger
context and can capture dependencies within the generated sequence that other
tests may miss.

To construct a precise statistical test, we need to know the distribution of the
NMW. Here, we present an efficient method to compute the exact expectation.
In [10] the authors express a conjecture about the distribution from simula-
tions. In Section 4, we propose a slightly different central limit conjecture, which
agrees in principle with the observations in [10], but additionally has theoretical
foundations in the classical occupancy problem for urn models (e.g., see [7]).

Common Words and Analysis of Pattern Matching Algorithms Us-
ing g-gram Filtration. The NCW statistic has many applications. It serves
as a distance measure between texts, especially for the comparison of biological
sequences [11, 17, 13, 6]. It is also important for the analysis of text algorithms
and especially for pattern matching algorithms. Here we consider the analysis of
filtration algorithms for the k-difference approximate pattern matching problem
defined as follows: Given a pattern P and a text 7', find all ending positions ¢

in T of an approximate match of P with at most k differences (substitutions,
insertions or deletions). Filtration algorithms use a quickly verifiable necessary
condition for a match to filter out parts of 7' where no match can occur; the re-
maining parts are checked with a slower dynamic programming algorithm. Sev-
eral filtration strategies are based on the condition that an approximate match
and P should share a sufficient number of ¢g-grams (among others, see [8, 18, 19]).
Algorithms based on g-gram filtration perform very well in practice when the
filtration condition is not fulfilled very often. The average running time depends
on the NCW. The ability to compute its expectation should allow to analyze the
average time complexity and to determine under which conditions which algo-
rithm performs best. We were motivated to examine word statistics in random
texts since we hope to analyze and fine-tune the recently proposed QUASAR
algorithm [2], which uses the g-gram filtration approach. It serves to search for
similar biological sequences in large databases, and has has been shown to be an
order of magnitude faster than standard programs like BLAST [1].

Organization of this article. As of today, the literature does not report
any exact systematic statistical study of the NMW and NCW in random texts
(but see [10, 12] for some results). We describe an efficient method to calculate
the exact expectations in Section 2. They depend on the probability that a g¢-
gram does not occur in a text of length n, which itself depends only on the
autocorrelation of the g-gram. The autocorrelation is a binary vector giving the
shifts that cause the word to overlap itself. Our method requires the computation
of all possible autocorrelations of length ¢, for which we propose the first efficient
algorithm (Section 3).

The difficulty in computing the exact expectations arises from the fact that
successive g-grams in a text overlap and are hence dependent. Treating them as
if they were independent, one obtains the so-called classical occupancy problem
for urn models (see [7] or Section 4). In this much simpler setup, many results
are known, and we propose to use them as approximations to the missing words
problem. The quality of these approximations is evaluated in Section 5, where
we also give some exemplary results on the two applications mentioned above.

2 Computation of Expectations

2.1 Expected Number of Missing g-grams

We assume that the word length ¢ > 2 and the alphabet size o > 2 are fixed. We
denote by X (™ the random number of missing g-grams in a text 7™ of length
n. Assume we have enumerated the o9 possible g-grams in some arbitrary order;
let us call them Q1, Qa,...,Qqe. For the event that a ¢g-gram Q occurs in 7™
we use the shorthand notation Q € T, and Q ¢ T for the complementary
event. By the method of indicator variables we find that

EX™] = GZPr(Qi ¢ T™). (1)

An important point is that even in the symmetric Bernoulli model the probabil-
ities of non-occurrence are not the same for every g-gram. For example, among
the eight bit-strings of length 3, five do not contain the 2-gram ’00’, while four
do not contain the 2-gram ’01’. The probability depends on the autocorrelation
of the g-gram, defined as follows (see also [4, 16]).

Definition 1 (Autocorrelation of a ¢g-gram). Let @ = Q[0]...Q[¢g — 1] be
a g-gram over some alphabet. Then we define its autocorrelation ¢(Q) = ¢ :=
(co,-..,cq—1) as follows: For i =0,...,¢q — 1, set ¢; := 1 iff the pattern overlaps
itself if slided 7 positions to the right, i.e., iff Q[i+j] = Q[j] for all j = 0,...,(¢—
i —1). Otherwise, set ¢; := 0. Note that by this definition we always have ¢; = 1.

The corresponding autocorrelation polynomial (C(Q))(z) = C(z) is obtained
by taking the bits as coefficients: C(2) := ¢cp + c12 + c22% + -+ + ¢4_129 L.

As an example, consider the 11-gram (J=ABRACADABRA. By looking at the posi-
tions where this word can overlap itself, we find that ¢(Q) = (10000001001), and
therefore (C(Q))(z) = 1+ 27 + 21°.

The following lemma gives the probability of the event Q ¢ T(").

Lemma 1 (Guibas & Odlyzko [5]). Let @ be a ¢g-gram over some alphabet of
size o; let C(z) be its autocorrelation polynomial. Then the generating function
P(z) of the sequence (p, := Pr(Q ¢ T(™)),>; is given by

¢ (3)

a

(2)'+0-2)-C(3)

a

P(z) =

The lemma states that, if we expand P(z) as a power series P(z) = Y~ pnz",
then the coefficient p, of 2" is exactly Pr(Q ¢ T(). We will use the usual
“coefficient extraction” notation [z"]P(z) to refer to py,.

Efficient computation. In the symmetric Bernoulli model, the probability of
non-occurrence of a g-gram depends only on the alphabet size and on the auto-
correlation, but not on the g-gram itself. Thus, we can simplify the calculation
of E[X("] by grouping together g-grams with the same autocorrelation. Let us
enumerate the distinct autocorrelations that occur among the g-grams in some
arbitrary order: Ci(2), C2(2), ..., Cx(z), with k being their number. Let P;(2)
be the generating function of Lemma 1 with C(z) replaced by C;(z), and let N;
be the number of g-grams with autocorrelation polynomial C;(z). We refer to
N; as the population size of the autocorrelation C;(z). With these definitions
and Lemma 1, Equation (1) becomes

EX™M] = Nj-["]F;(2). 2)
j=1

To evaluate this sum, we must know the « different polynomials C;(z) and their
population sizes N;. This is discussed in Section 3. First, we mention how to
evaluate [2"]P;(z) efficiently.

2.2 Coefficient Extraction

Note that the Pj(z) (j = 1,..., k) are rational functions of the form g ((; where
f and g are polynomials in z such that deg(f) < deg(g) (here deg(f) =¢—1
and deg(g) = ¢). Moreover, f and g have no common factors, and g(0) = 1. For
the remainder of this section, call a function of this form a standard rational
function.

There is an exact method to compute the coefficients of the power series
expansion of standard rational functions in time O(q®logn), e.g., see [9].

However, in our case the generating functions P; are particularly well behaved
when it comes to asymptotic approximation based on the following lemma.
Lemma 2 (Asymptotic Approximation). Let P(z) = z((jg be a standard

rational function, and let by,...,b, be the (not necessarily distinct) poles of
P(z), i.e., the complex values for which g(z) = 0, appearing according to their
multiplicity and ordered such that |b1]| < |b2| < ... < |bg|. If |b1| < |b2|, then

B:=b €R and
_IB) gy,

Pn ~
9'(B)
where ~ means that the ratio of the left and right hand sides tends to 1 as
n — 00. The error drops roughly as ’;—;
Proof. See [16], or any textbook about linear difference equations. O

To apply the lemma, we need to verify that the P;(z) fulfill the [bi| < |bs]
condition. The rather technical proof is not included here; a proof along similar
lines can be found in [3]. It turns out that the pole of smallest absolute value of
Pj(z) is always slightly larger than 1, whereas the absolute values of the other
poles are much larger. Hence |by|/|b2| is small, and the asymptotic approximation
is already excellent for small values of n, such as n = 2¢. A good way to determine
B = by is Newton’s method with a starting value of 1. We summarize the main
result:

Theorem 1 (Expected Number of Missing Words). Except for a negligi-
ble asymptotic approximation error,

X(”) — ~N; - (n+1)
] = Z) -B;

where f;(z) := Cj(z/0) and g;(2) := (2/0)? + (1 — 2) - Cj(2/0), and B; is the
unique root of smallest absolute value of g;(2) O

2.3 Expected Number of Common g-grams of Two Texts

The same principles can be used to compute the expected number of ¢-grams
that are common to two independent random texts T and S(™ of lengths n
and m, respectively.

We need to define more precisely how to count common g¢-grams. If a given
fixed g-gram @ appears z > 0 times in T and y > 0 times in S(™), should
that count as (a) only 1, (b) z, (¢) y, or (d) zy common g¢-gram(s)? The answer
depends on the counting algorithm. Case (a) suggests that we check for each
of the 07 g-grams whether it occurs in both texts and increment a counter if
it does. Case (b) implies that we look at each g-gram in T(™ successively, and
increment a counter by one if we find the current ¢g-gram also in S(™). Case (c) is
symmetric to (b), and case (d) suggests that for each g-gram of T(™), a counter
is incremented by the number of times the g-gram appears in S(™).

Let Z.("’m) denote the number of g-grams that occur simultaneously in both
T and S(™ according to case (e) with e €{a,b,c,d}.

Theorem 2 (Expected Number of Common Words). Except for a negli-
gible asymptotic approximation error,

(n,m) i (Bj) o—(nt1) [i(Bj) o (m+1)
B[Z,m™)] = ZN(J(ﬂ)ﬂ)(g](ﬂ)ﬁ)

- 1
]E[Zlgn,m)] — n 0(.Iq+ q+ZN f] B] /3 (m+1)

n—q+1)-(m—q+1)
ol

]E[Z((i"’m)] d (This is exact.)
The result for E[Z{™™] is obtained by exchanging n and m in the result for
E[Z{™™]. We have used k, N;, f;(2), 9;(z) and $; as in Theorem 1.

Proof. As before, let @1, ...,Q,q« be an arbltrary enumeration of all g-grams over
3. For case (a), we have E[Z{™™] = S Pr(Q; € T™ and Q; € S(™). By
using the independence of the texts, noting Pr(Q; € T(")) =1-Pr(Q; ¢ T™),
and grouping g-grams with the same autocorrelation together, we obtain

z<"m>]—ZN Pj(2)) - (1 = [2™]P;(2)).

An application of Lemma 2 proves the theorem for case (a).

For case (b), let Y(™ be the number of missing words in S™). Then the
expected number of different g-grams appearing in S™ is ¢ — E[Y (™)]. Each
of these is expected to appear (n — g+ 1)/0? times in T(™. Since the texts are

independent, we obtain]E[Z,S"’m)] = 24t (g7 — E[Y (™)), and an application of
Theorem 1 proves case (b).
Case (c) is symmetric to case (b), and case (d) is left to the reader. O

3 Enumerating Autocorrelations and Population Sizes

Enumerating the Autocorrelations. Our enumeration algorithm is based on
a recursively defined test procedure =(v) proposed by Guibas and Odlyzko in

[4]. Tt takes as input a binary vector v of arbitrary length ¢, and outputs ’true’
if v arises as the autocorrelation of some g-gram over any alphabet!, and 'false’
otherwise.

To enumerate I'(q), the set of all autocorrelations of length ¢, one could in
principle use = to test every binary vector v = (vo, ..., vq—1) With vg = 1 whether
it is an autocorrelation, but this requires an exponential number of tests. The
recursive structure of = (v) allows to build an efficient dynamic programming
algorithm for the enumeration of I'(q), which we describe now.

First, a notational remark. While we use n for the text length in the other
sections, here we use n as a running variable for the autocorrelation length,

n =1,...,q. This should cause no confusion.
For a binary vector v of length n with vy = 1, define 7(v) := min{l < i <
n :v; = 1}, and let w(v) := n if no such ¢ exists. Forn > 1, p=1,...,n, let

I'(n,p) be the set of autocorrelations v of length n for which 7(v) = p. Then
n

I'(n) = | I'(n,p). We denote the concatenation of two bit vectors s and ¢ by
p=1

sot, and the k-fold concatenation of s with itself by s*. So 10* o w is the binary
vector starting with 1, followed by & 0s, and ending with the binary vector w.

From the definition of autocorrelation we have that v € I'(n, p) implies v;p, =
1 for all j = 1,2,..., for which jp < n. It follows that I'(n,1) = {1™}. Also,
I'(n,n) = {10"1}. To obtain I'(n,p) forn >3 and 2 < p < (n — 1), we assume
all I'(m,p'") with m < n, 1 < p' < m, are already known. Then there are two
cases:

Case (a) 2 <p < %]: Let ' :=nmod p and r :=r' + p. Then p < r < 2p,
and there are two sub-cases. In each of them, I'(n,p) can be constructed

from a subset of I'(r). Hence, let s,, := (10P~1)l"/PI=1 every string in
I'(n,p) has s, as a prefix, and is then followed by a string w € I'(r), as
follows.

1. Case r = p:

I(n,p) ={snpow|wel(rp); r+eged(p,p’) <p <p} (3)
2. Case p<r < 2p:
I'(n,p) = {snpow|we I'(r,p)} (4)
U {snpow |w e I(r,p'); r+ged(p,p) <p <p; wy,=1}
We remark that the condition imposed on p' in (3) and (4) (r'+ged(p,p’) <
p' < p) implies that p’ must not divide p.
Case (b) [5 <p < (n—1)]: I'(n,p) is constructed from I'(n — p).

I'(n,p) = {10 ow |w € I'(n —p)} ()

! In [4], it is proved that if v is an autocorrelation of some word over an alphabet of
size o > 2, then it is also the correlation of word over a two-letter alphabet.

The equations (3), (4) and (5), along with the known forms of I'(n, 1) and I'(n,n)
for all n, yield a dynamic programming algorithm for the construction of I'(g).
For n=3,...,q, in order to compute all I'(n,p) with 1 < p < n, one needs the
sets of autocorrelations of shorter lengths I'(m, p') with m < [22],1 <p' <m
. The correctness of the algorithm follows from the correctness of the recursive
predicate =(v) in [4], after which it is modeled.

One improvement is possible: In case (a), I'(n,p) is obtained from auto-
correlations w € I'(r) with » > p. Examining the characterization of auto-
correlations given in [4] more closely, it can be shown that such w must have
m(w) > (n mod p), and therefore it is possible to construct I'(n,p) from the sets
I'(s) with s < p. Hence, to obtain I'(n,p), in both cases (a) and (b), only the
sets I'(m,p') with m < [§], 1 < p’ < m are needed. For example, to compute
I'(200), we only need to know I'(1),...,I'(100), but not I"(101), ..., I'(199).

The Number of Autocorrelations. When we know I'(g), we also know
its cardinality x(q), which is the number of terms in the sum of (2). In [4] it is
proved that asymptotically

(In g)?

21n(3/2) +o((In Q)2)> ;

K(q) < exp (
hence computing the expected number of missing words by (2) is considerably
more efficient than by (1), which uses ¢? terms.

Population sizes. To determine how many ¢g-grams over an alphabet of size
o share a given autocorrelation v € I'(q) (the population size N(v)), we refer
the reader to [4, Section 7], where a recurrence for N(v) = N((vg,-..,v4-1)) in
terms of N((vx(v),---,vg-1)) is given, or to our technical report [15], where an
alternative method is described.

4 Approximations

Since for large ¢, the exact methods in Section 2 become very time-consuming, we
consider a simpler but related problem, whose solution we take as an approximate
solution to the missing words problem.

Classical Occupancy Problem: When N balls are independently thrown into
M equiprobable urns, what is the distribution of the number of empty urns X
after the experiment? For this setup, the moments of X (expectation, variance,
and higher moments) are known. For example, we have that

E[X] =M(1—%)N, (6)

Var[X]= M (1 - %)N + M(M -1) (1 - %)N - M? (1 - %)m (7

Even the distribution of X can be given explicitly in terms of the so-called
Stirling numbers of the second kind. From this knowledge, the following result
can be derived.

Lemma 3 (Central Limit Theorem for the Classical Occupancy Prob-
lem). Let (Ny) and (M}) be sequences of natural numbers such that Ny — oo,
My, — oo and %’Z — A > 0, as k — oo. Let (X}) be the sequence of random
variables denoting the number of empty urns after Ny balls have been thrown
independently into My urns. Then, as k — oo, we have

E[X}, /M) = e, (8)
Var[Xi//My] = (X —1 = N)e 2. (9)

Moreover, we have convergence in distribution

X — My e

3N, (10)
\/Mk (e*=1=X)e 22
where N denotes the standard normal distribution.
Proof. See, for example, [7]. O

The missing words problem is a modification of the classical occupancy problem
in the following sense. The M urns correspond to the o7 possible words, and the
N balls correspond to the (n — g+ 1) g-grams of the text. The difference is that
successive g-grams in the text are strongly dependent because they overlap by
(¢ — 1) characters, while the balls in the occupancy problem are assumed to be
independent.

Approximations. We propose to use the results from the occupancy problem
by assuming that the ¢-grams are not taken from a text but generated indepen-
dently. Then the probability that a fixed ¢g-gram does not occur among n — g+ 1
randomly drawn g-grams is (1 — 2)"~%*1. Hence, the expected number of miss-
ing words can be approximated by (6), giving

1 n—q+1
E[X(™] ~ o - (1 - ;) (11)

This can be further approximated by using the asymptotic value from (8), re-
sulting in
n—q+1

EX™M]xo? e, \:=
ol

(12)
We call (11) the independence approximation (IA), and (12) the exponential
approzimation (EA).

A Central Limit Conjecture for Missing Words. The numerical results
in Section 5 show that the independence approximation is surprisingly good.
Also, the asymptotic variance in the occupancy problem (M (e* —1 — \)e™2})
is in accordance with the variance of the number of missing words observed by
Marsaglia & Zaman in [10] (M} (e* — 3) e 2*) when they conducted simulations
for slightly varying A =~ 2. Although we have not checked higher moments, we
formulate the following conjecture.

Conjecture 1. The number of missing g-grams over an alphabet of size ¢ in a
text of length n, and the number of empty urns after N :=n — ¢ + 1 balls have
been independently thrown into M := ¢? urns have the same Gaussian limit
distribution, as given in Lemma 3.

Further Remarks. Other approximations are possible. For example, one may
assume that the waiting time until a ¢-gram first occurs in the text has a geomet-
ric distribution. Due to space constraints, we do not consider this approximation
any further here. In our tests, (IA) always turned out to be better by an order of
magnitude. Also, (IA) and (EA) can be applied to the common words problem
as well, as shown here for case (b) from Section 2.3:

(1A): Bz~ (n—q+1)- (1= (1=)" ™)

(BA): EZ\™™] ~ (n - q+1) - (1 - exp (25£L))

5 Comparison of the Methods

We evaluate the quality of the approximations in two different scenarios of prac-
tical relevance.

A Monkey Test of High Order. Coming back to the monkey test described
in Section 1, we compute the expected number of missing bit-strings of length
33 in a random text of varying length n exactly by Theorem 1 (XT), and ap-
proximately according to the independence approximation and the exponential
approximation from Section 4. The excellent quality of the approximations can
be seen in Table 1. The relative errors are around 10~% or lower. Since for the
exact method, k = k(33) = 538 different correlations have to be evaluated, the
approximations save time without sacrificing quality. This behavior is quite typ-
ical when the alphabet size, the word length and the text length are sufficiently
large. For some further numerical results, see [14]. For all computations, we used
100-digit-precision arithmetic. High precision is necessary for the exact computa-
tion and for (TA), as the standard floating point introduces large roundoff errors.
(EA) is more robust in this respect.

QUASAR Analysis. The QUASAR algorithm [2] can be used to search DNA
databases (long texts with o = 4) for approximate matches to a pattern of
length n = 50 with at most & = 7 differences. Assume that the database has
been partitioned into blocks of size m = 256. Assume further that an index is
available to quickly determine how many g-grams Z = Z,E"’m) each block and the
pattern have in common according to Section 2.3, Case (b), for ¢ € {3,4,5,6}.
By a lemma of Jokinen & Ukkonen [8], no k-approximate match can occur in
a block if the number of common g¢-grams is below t(¢) := n — q + 1 — kq.
Hence in the event Z > t(g) a block must be kept for further inspection. It
is natural to ask for which value of ¢ the filtration performance is optimal, i.e.,
Pr(Z > t(g)) is minimal. When only E[Z] is known, Pr(Z > t(g)) can be bounded
with Markov’s inequality, P(|Z| > t) < E[|Z]]/t. Table 2 lists some relevant
values. The approximation error is of the order 1073, i.e., approximately 0.1%.

Table 1. Expected number of missing 33-grams for alphabet size ¢ = 2 and varying
text length n. Line 1 (XT) shows the exact values according to Theorem 1. Line 2 (IA)
gives the independence approximation (IA), and Line 3 the order of magnitude of its
relative error. Line 4 shows the exponential approximation (EA), and Line 5 the order
of magnitude of its relative error.

Expected Fraction of Missing g-grams, E[X (”)] /o4, for o = 2 and q=33
Method n=0.501 n = og? n=201 n =401
1 (XT) 0.606530661913 |0.36787944248 (0.135335283715 |0.018315638966
2 (TA) 0.606530661954 |0.36787944252 (0.135335283725 |0.018315638952
3|log, (Rel.Error) -10.169 -9.972 -10.147 -9.124
4 (EA) 0.606530661972 |0.36787944254 |0.135335283741 |0.018315638957
5|log,(Rel.Error) -10.014 -9.783 -9.726 -9.285

Table 2. Expected number of common g-grams of two texts of length 50 and 256
according to case (b) of Section 2.3, for varying ¢q. The alphabet size is o = 4. Line
1 shows the exact value (XT). Line 2 gives the independence approximation (IA),
and Line 3 shows the magnitude of its relative error. Line 4 gives the exponential
approximation (EA), and Line 5 the order of its relative error. Line 6 shows the Jokinen-
Ukkonen threshold ¢(q) for g-gram filtration to find matches with k£ = 7 differences.
Line 7 gives an upper bound on the probability of at least ¢(¢) common ¢-grams, based
on Markov’s inequality.

Quantity q=3 qg=4 q=5 | qg=6
1 E[Z] (XT) 47.10188 | 29.55391 |10.04229|2.67534
2 E[Z] (IA) 47.12092 | 29.53968 [10.03927|2.67509
3| log;o(Rel.Error(IA)) | —3.393 —3.317 | —3.523 | —4.041
4 E[Z] (EA) 47.09294 | 29.50585 [10.03495(2.67478
5| log,o(Rel.Error(EA)) | —3.722 —2.789 | —3.136 | —3.679
6 (@) 27 19 11 3
7|Pr(Z > t(q)) (Markov)|trivial < 1|trivial <1| < 0.913 |< 0.892

If one is willing to accept the simple random input model?, g = 6 offers the best
bound, but a more precise statement can only be made if more is known about
the distribution of Z.

6 Conclusion and Future Work

We have presented exact and approximate methods to compute the expected
number of missing ¢-grams in a random text and the expected number of common
words in two independent random texts. The exact computations require the

2 DNA is surely not a “random text” since it contains biological information. Still, the
analysis of the algorithm under a simple random input model can give valuable hints
to its performance on real data, as long as no stronger formal assumptions about
the data can be made.

knowledge of all autocorrelations of length ¢, for which we exhibit an efficient
dynamic programming algorithm.

We observe that in general the independence approximation (TA) gives ex-
cellent results, although clearly the g-grams of a text are not independent. An
explanation is that, although for each i, Pr(Q; ¢ T(™) may be very different
from (1 — al—q)", there is an averaging effect in the sum over all ¢g-grams, such
that (IA) continues to hold approximately. We have been unable to prove this,
though. It also remains an open problem to prove or disprove Conjecture 1, or to
make it more precise. We wanted to point out the relatedness of the NCW prob-
lem and the classical occupancy problem, which seems to have been overlooked
in related work.

For short texts, small alphabets and small word lengths, the errors due to the
use of either approximation are quite high. The exact method is then advised,
since it is inexpensive in these cases. However, high precision arithmetic should
be used to avoid roundoff errors. In the other cases, (EA) is the most reason-
able choice, because its evaluation poses the least numerical problems, and the
approximation error can be neglected.

Acknowledgments: We thank M. Vingron, P. Nicodéme, and E. Coward for help-
ful discussions. We wish to thank especially the groups of Ph. Flajolet and S. Schbath
for the opportunity to discuss this work at an early stage. The referees’ comments have
led to substantial improvements in the presentation of this work. E. R. was supported
by a grant of the Deutsches Humangenomprojekt and is now supported by the CNRS.

References

[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic Local Alignment
Search Tool (BLAST). Journal of Molecular Biology, 215:403-410, 1990.

[2] S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and M. Vingron.
g-gram based Database Searching Using a Suffix Array (QUASAR). In S. Istrail,
P. Pevzner, and M. Waterman, editors, Proceedings of The Third International
Conference on Computational Molecular Biology, pages 77-83. ACM-Press, 1999.

[3] L. J. Guibas and A. M. Odlyzko. Maximal Prefix-Synchronized Codes. SIAM
Journal of Applied Mathematics, 35(2):401-418, 1981.

[4] L. J. Guibas and A. M. Odlyzko. Periods in Strings. Journal of Combinatorial
Theory, Series A, 30:19-42, 1981.

[6] L. J. Guibas and A. M. Odlyzko. String Overlaps, Pattern Matching, and Non-
transitive Games. Journal of Combinatorial Theory, Series A, 30:183-208, 1981.

[6] W. Hide, J. Burke, and D. Davison. Biological evaluation of d2, an algorithm for
high-performance sequence comparison. J. Comp. Biol., 1:199-215, 1994.

[7] N. L. Johnson and S. Kotz. Urn Models and Their Applications. Wiley, New
York, 1977.

[8] P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching
in static texts. In A. Tarlecki, editor, Proceedings of the 16th symposium on
Mathematical Foundations of Computer Science, number 520 in Lecture Notes in
Computer Science, pages 240-248, Berlin, 1991. Springer-Verlag.

[9] D. E. Knuth. The Art of Computer Programming, volume 2 / Seminumerical
Algorithms. Addison-Wesley, Reading, MA, third edition, 1998.

[10]
[11]

[12]

[13]
[14]

[15]
[16]

[17]

(18]

[19]

G. Marsaglia and A. Zaman. Monkey Tests for Random Number Generators.
Computers and Mathematics with Applications, 26(9):1-10, 1993.

A. A. Mironov and N. N. Alexandrov. Statistical method for rapid homology
search. Nucleic Acids Res, 16(11):5169-73, Jun 1988.

O. E. Percus and P. A. Whitlock. Theory and Application of Marsaglia’s Monkey
Test for Pseudorandom Number Generators. ACM Transactions on Modeling and
Computer Simulation, 5(2):87-100, April 1995.

P. A. Pevzner. Statistical distance between texts and filtration methods in se-
quence comparison. Comp. Appl. BioSci., 8(2):121-127, 1992.

S. Rahmann and E. Rivals. The Expected Number of Missing Words in a Random
Text. Technical Report 99-229, LIRMM, Montpellier, France, 1999.

E. Rivals and S. Rahmann. Enumerating String Autocorrelations and Computing
their Population Sizes. Technical Report 99-297, LIRMM, Montpellier, France,
1999.

R. Sedgewick and P. Flajolet. Analysis of Algorithms. Addison-Wesley, Reading,
MA, 1996.

D. C. Torney, C. Burks, D. Davison, and K. M. Sirotkin. Computation of d*: A
measure of sequence dissimilarity. In G. Bell and R. Marr, editors, Computers and
DNA, pages 109-125, New York, 1990. Sante Fe Institute studies in the sciences
of complexity, vol. VII, Addison—Wesley.

E. Ukkonen. Approximate string-matching with g-grams and maximal matches.
Theoretical Computer Science, 92(1):191-211, Jan. 1992.

S. Wu and U. Manber. Fast text searching allowing errors. Communications of
the Association for Computing Machinery, 35(10):83-91, Oct. 1992.

