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Local repetitions in genomes are called tandem repeats. A tandem repeat contains mul-
tiple, but slightly different copies of a repeated unit. It changes over time as the copies
are altered by mutations, when additional copies are created by amplification of an
existing copy, or when a copy is removed by contraction. Theses changes let tandem
repeats evolve dynamically. From this statement follow two problems. Tandem Repeat

History aims at recovering the history of amplifications and mutations that produced
the tandem repeat sequence given as input. Given the tandem repeat sequences at the
same genomic location in two individuals and a cost function for amplifications, con-
tractions, and mutations, the purpose of Tandem Repeat Allele Alignment is to find
an alignment of the sequences having minimal cost. We present a survey of these two
problems that allow to investigate evolutionary mechanisms at work in tandem repeats.

1. Introduction

A striking genetic difference between species is the size of their genome. Relatively

simple organisms, like the protist Amoeba dubia, may have much larger genome

than Homo sapiens for instance. These dramatic differences are due to the presence

of repeats. In general, in eukaryotes, organisms whose cells bear a kernel, duplicated

genetic material is abundant and can account for up to 60% of the genome. Although

some of the mechanisms that generate these repeats are known, from the point of

view of evolution, the reasons for such redundancy remain an enigma.

Repeats whose copies are distant in the genome, whether or not located on the

same chromosome, are called distant repeats. In this review, we focus on repeats

whose copies are adjacent on a chromosome. Because of this characteristic, they

bear the name of tandem repeats. Among those, biologists distinguish micro-

satellites, mini-satellites, and satellites, according to the length of their re-

peated unit: between 1 and 6 base-pairs, between 7 and 50 base-pairs, and above

225



March 16, 2004 11:53 WSPC/112-IJFCS 00239

226 E. Rivals

50 base-pairsa, respectively. These names are mainly used for repeats located in re-

gions that do not contain genes. In addition to these sub-classes, numerous groups

of similar genes that originate from the same ancestor gene are organized in tandem.

They are termed tandemly repeated genes.

Local repeats in the DNA arise, grow or disappear through molecular events that

copy a contiguous segment on the DNA and insert one or many copies of it next

to the original segment, or perform the dual operation. We name these two types

of events amplification and contraction. Like any other segment of the genome,

the repeated copies also change through point mutations: insertion, deletion or

substitution of one base. Point mutations give rise to approximate tandem repeats.

The pattern of point mutations along the tandem array of copies informs us on

the parent-child relationships between copies. In other words, it gives access to the

history of the tandem repeat.

The relatively high frequency of these events let these local repeats evolve

rapidly. For a given species and at a precise location on the chromosome, a lo-

cus, the repeat varies in sequence and/or length in different individuals. Hence,

such a locus is said to be polymorphic and each different sequence encountered

at this locus is called an allele.

1.1. Approximate Tandem Repeats

In biology, local repetitions in DNA are called ”tandem repeats” irrespectively of

the number of copies. In computer science, a local repetition is dubbed a square

if it contains two copies, a cube if it contains three, and so on.

An amplification creates a substring that is an Exact Tandem Repeat, ETR

for short. An ETR is a power of the original pattern: for an integer m, it equals um

if the pattern is u. When later in the course of evolution point mutations affect this

ETR, they let identical positions in adjacent copies differ and the ETR becomes

an Approximate Tandem Repeat, ATR for short. Note that any sequence is an

ATR of some motif. In practice, only repeats whose copies are similar enough receive

attention. The level of internal similarity that distinguishes any random sequence

from a sequence of true repeats, i.e., that is created by some amplifications, is

defined from a statistical view-point (for example in the software TRF[5]) or by

an information theoretical measure ([43, 42]). The problem of detecting significant

ETR or ATR is an active area of research (see for instance [42, 46, 14, 5, 35, 36, 44]).

In the sequel of the paper, by ATR we mean a tandem repeat with sufficient internal

similarity. An example of an ATR is given Fig. 1 under the form a multiple alignment

of its copies.

Point mutations could cause two adjacent copies to diverge so far that their

common ancestry is not recognizable anymore from sequence similarity. In this

aChromosomes are made of a double-stranded Deoxyribonucleic Acid (DNA) helix, whose basic
building block is a pair of bases. The unit of a DNA sequence is thus called a base-pair and is
abbreviated by bp.
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1.1 Approximate Tandem Repeats

In biology, local repetitions in DNA are called ”tandem repeats” irrespectively of the number of copies.
In computer science, a local repetition is dubbed a square if it contains two copies, a cube if it contains
three, and so on.

An amplification creates a substring that is an Exact Tandem Repeat, ETR for short. An ETR
is a power of the original pattern: for an integer m, it equals um if the pattern is u. When later in the
course of evolution point mutations affect this ETR, they let identical positions in adjacent copies differ
and the ETR becomes an Approximate Tandem Repeat, ATR for short. Note that any sequence
is an ATR of some motif. In practice, only repeats whose copies are similar enough receive atten-
tion. The level of internal similarity that distinguishes any random sequence from a sequence of true
repeats, i.e., that is created by some amplifications, is defined from a statistical view-point (for exam-
ple in the software TRF [Ben99]) or by an information theoretical measure ([RDDD96,RDD+97]).
The problem of detecting significant ETR or ATR is an active area of research (see for instance
[RDD+97,SM98,DDR99,Ben99,KK00,KK01,SG02]). In the sequel of the paper, by ATR we mean a
tandem repeat with sufficient internal similarity. An example of an ATR is given Fig. 1 under the form
a multiple alignment of its copies.

Point mutations could cause two adjacent copies to diverge so far that their common ancestry is
not recognizable anymore from sequence similarity. In this case, it is not a repeat anymore. A major
hypothesis is that amplification is favored by the similarity of adjacent patterns, and that when copies
have diverged for a long time such former repeat does not undergo amplification anymore. In highly
polymorphic loci, like some minisatellites, amplifications and contractions are more probable than point
mutations. On the contrary, tandemly repeated genes can accumulate hundreds of mutations and still
undergo some amplifications; in this case, amplifications and contractions are less frequent than point
mutations.

When one wishes to establish the common ancestry of any two genes, one first searches for sequence
similarity. The similarity is quantified through sequence alignment. The Alignment is a weighted
version of the Longest Common Subsequence problem and, in the classical setup, considers only
point mutations. An exact solution is based on dynamic programming [Gus97,SK99]. Dealing with
tandem repeat requires to consider also amplifications and contractions. We do not report on other
algorithmic and combinatorial problems on local repetitions and refer the reader to numerous textbooks
on the subject, among which [Lot99,CHL01,Gus97].

c t g a g c t c A a C c t t g c t c T g a g c A T c a t c t t - c t
c t g a g c t c c a t c t t A c A c T g a g A A G c a C c t G - c t
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Fig. 1. A multiple alignment of the 8 copies of a tandem repeat found on the human chromosome 22. The lines
of the alignment contain the copy in the same order than on the chromosome. Symbols in bold uppercase mark
differences between the current copy and a 34 bp consensus motif. On the third column from the right, the
copies 3 to 6 all have an extra g character suggesting that they may have arisen through an amplification of
arity 4 after the g was inserted in the original copy.

1.2 Interest in Tandem Repeats

In this section, we summarize theoretical, technical, and medical interests in tandem repeats.

Fig. 1. A multiple alignment of the 8 copies of a tandem repeat found on the human chromosome
22. The lines of the alignment contain the copy in the same order than on the chromosome. Symbols
in bold uppercase mark differences between the current copy and a 34 bp consensus motif. On the
third column from the right, the copies 3 to 6 all have an extra g character suggesting that they

may have arisen through an amplification of arity 4 after the g was inserted in the original copy.

case, it is not a repeat anymore. A major hypothesis is that amplification is favored

by the similarity of adjacent patterns, and that when copies have diverged for a

long time such former repeat does not undergo amplification anymore. In highly

polymorphic loci, like some minisatellites, amplifications and contractions are more

probable than point mutations. On the contrary, tandemly repeated genes can ac-

cumulate hundreds of mutations and still undergo some amplifications; in this case,

amplifications and contractions are less frequent than point mutations.

When one wishes to establish the common ancestry of any two genes, one first

searches for sequence similarity. The similarity is quantified through sequence align-

ment. The Alignment is a weighted version of the Longest Common Subse-

quence problem and, in the classical setup, considers only point mutations. An

exact solution is based on dynamic programming [25, 45]. Dealing with tandem re-

peat requires to consider also amplifications and contractions. We do not report

on other algorithmic and combinatorial problems on local repetitions and refer the

reader to numerous textbooks on the subject, among which [39, 13, 25].

1.2. Interest in Tandem Repeats

In this section, we summarize theoretical, technical, and medical interests in tandem

repeats.

Theoretical Interests.

The abundance of tandem repeats rise some theoretical questions concerning their

role in the structure and evolution of the genome. How and why do they appear

and evolve? Are they correlated to other local characteristics of the DNA? How

frequently do new genes appear through tandem amplification? Already in the

70’s, Ohno [40] argued that gene duplication is a major force in the evolution of

genomes. For more information on these topics, the reader may refer to textbooks

on molecular evolution like [41, 38].

Technical Interests.

Tandem repeats, especially polymorphic micro- and mini-satellites, have proven



March 16, 2004 11:53 WSPC/112-IJFCS 00239

228 E. Rivals

useful in many areas of molecular biology. Polymorphic markers are used since

the beginning of the 90’s to construct low resolution genetic maps. A well-known

example is the first genetic map of the human genome built with more than 5000

microsatellites markers [12]. These microsatellites also serve in linkage analysis and

positional cloning to detect and locate molecular variations causing disorders [37,

Chap. 3]. Linkage analysis looks for inheritance correlations between a trait and

genetic markers within a pedigree. Polymorphic tandem repeats are markers of

choice for Mendelian diseases because the discriminative power of linkage analysis

increases with the number of alleles.

In population genetics, polymorphic markers enable biologists to trace the prop-

agation of genetic traits in populations. For instance, highly polymorphic mini-

satellites allow to confirm the “Out of Africa” hypothesis, i.e., that our species

originated in Africa and invaded afterwards the rest of the world [2]. Differences

between alleles of highly polymorphic markers, like the minisatellite MSY1 on the

human Y chromosome (see Section 3), give us access to recent populations history.

Because of their level of variability, some polymorphic tandem repeats distin-

guish any two individuals from the same population and enable the technique of

DNA fingerprinting [33, 34]. Such markers serve as genetic identifiers in forensic

studies for the identification of dead corpse, in paternity testing, and so on [24, 27].

In 1992, the skeletal remains exhumed in 1985 in Brazil were identified, through

testing of bone DNA, to be those of Dr Josef Mengele, the Auschwitz ’Angel of

Death’ [29].

Medical Interests.

At last, tandem repeats are involved in several diseases. Variable minisatellites are

known to influence the development of type-1 diabetes, epilepsy and some cancers

[6]. Some microsatellites are known to play a role in the regulation of some genes.

The most well-known examples are the dozen of severe neurodegenerative diseases

caused by large amplifications of CAG/CGG microsatellites either inside or near a

gene: fragile X mental retardation, myotonic dystrophy, Huntington’s disease, etc

(see references in [48, 38, 26]). In healthy individuals, the tandem repeat size varies

around a few tens of copies, while in affected individuals the number of copies at

the same locus reaches hundreds or a thousand in some cases.

For all these reasons, there are some needs to understand the evolution of tandem

repeats. The two problems surveyed in this article should help to establish which

mechanisms are responsible for amplification or contraction, to estimate how fast

the copies of a repeat change over time, to investigate hypotheses on the disease

development or to recover recent evolutionary relationships.

1.3. Two problems of interest

Let us first introduce a notation for strings. Let Σ be a finite alphabet of size σ.

A sequence of n letters of Σ indexed from 1 to n is called a word or a string of
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length n over Σ. We denote the length of a word U := U [1] . . . U [n] by |U |. For any

1 ≤ i ≤ j ≤ n, U [i, j] := U [i] . . . U [j] is called a substring of U . For U, V ∈ Σ∗, U.V

denotes the concatenation of U and V . For any integer h > 0, Uh denotes the h-th

power of U , i.e., the concatenation of h times U . We denote by Σ∗, respectively by

Σn, the set of all finite words, resp. of all words of length n, over Σ. dL, dH denote

respectively the Levenshtein and the Hamming distance on Σ∗.

Definitions.

We first define the events a sequence can undergo. The classical point mutation

events are substitution of a symbol by another, insertion or deletion of a symbol.

A synonym of a substitution is a change. When considered together, insertions and

deletions are called indels.

Definition 1 (Hamming and Levenshtein distances). Let r, s ∈ Σ∗ with n :=

|r| and m := |s|. If m = n then the Hamming distance between s and t, denoted

dH(r, s), equals the minimum number of substitutions needed to transform r into s.

When m is not necessarily equal to n, the Levenshtein distance between r and

s is denoted dL(r, s) and equals the minimum number of substitutions, insertions,

and deletions required to change r into s.

Examples: Let r := gata and s := gctt. dH(r, s) = 2 because changing r into s

requires substituting the first a by c and the second a by t. Now let r := gatag and

s := tagcta. dL(r, s) = 4 because to transform one into the other one needs to mute

the first g into t, to insert g and c in s, and to delete the last g of r.

Let k be the pattern length, i.e., the minimum size of substrings that can be

copied. We term amplification the general event that generates copies in tandem

of a substring and contraction the dual event. The order of an amplification is

the number of patterns that are copied at a time and its arity is the number of

copies produced by the amplification plus one.

Definition 2 (Amplification - Contraction) Let T be a text over Σ and k, i, m >

0 be integers such that ik ≤ |T | and m ≥ 2. An amplification of order i and

arity m on T replaces a substring u in T of length ik by um of length mik. In

other words if u := T [j, j + ik − 1], it creates a new text T ′ := T [1, j − 1].T [j, j +

ik−1]m.T [j + ik, |T |]. We say u is the pattern of the amplification. A contraction

of order i and arity m on T ′ is the dual event of the amplification, that is, it

replaces um by u and yields a new text T ′′ := T .

Figure 2 gives an example of the history for the ATR sequence

gatagctagctatctagctatcta with a basic motif size of k := 4. The sequence on the

last line gives the sequence observed nowadays on the chromosome, while other

lines give putative ancestral sequences in order of appearance. The sequence on the

first line is assumed to contain a single copy of the motif, i.e., to be of length k,

and this copy is the putative ancestral motif of the whole ATR. This implies that
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Fig. 2. On the left: An example history of an approximate tandem repeat with a basic motif size of k := 4. The
following events occurred in order: an amplification of order 1 and arity 2 (pattern is gata), a substitution of an
a by a c, an amplification of order 1 and arity 3 (pattern is tagc), a substitution of a g by a t, an amplification of
order 2 and arity 2 (pattern is gctatcta). The patterns and the copies produced are respectively underlined with
dashed and straight lines; the number of arrows of an amplification equals its arity. On the right: The multiple
alignment of the motifs of length k of the observed sequence. A majority consensus motif is gcta although the
ancestral motif of the history is gata.

Fig. 2. On the left: An example history of an approximate tandem repeat with a basic motif size
of k := 4. The following events occurred in order: an amplification of order 1 and arity 2 (pattern
is gata), a substitution of an a by a c, an amplification of order 1 and arity 3 (pattern is tagc),
a substitution of a g by a t, an amplification of order 2 and arity 2 (pattern is gctatcta). The
patterns and the copies produced are respectively underlined with dashed and straight lines; the
number of arrows of an amplification equals its arity. On the right: The multiple alignment of
the motifs of length k of the observed sequence. A majority consensus motif is gcta although the
ancestral motif of the history is gata.

the history begins with an amplification of order 1. In this example, the second

amplification (tagc replaced by (tagc)3) is of order 1 since the pattern copied has

length k and of arity 3 since two new copies have been inserted after the original

pattern. The last amplification (gctatcta replaced by (gctatcta)2) has order 2 since

the pattern copied has length 8 = 2k and arity 2 because only one copy has been

inserted after the original.

When amplifications are of arity 2 only, we use the word duplication instead.

Point mutations and amplifications are illustrated in Figure 2. It is natural to

extend this definition by allowing i and m to be rationals instead of integers. Un-

fortunately, none of the works reported in literature consider this case. Often the

terms duplication, triplication, and m-duplication are used instead of amplifica-

tion. We choose amplification to avoid ambiguity. Also in [4], contraction is used

with another meaning that we will give later on. In the biological literature, long

amplifications are also called expansions.

Given these basic definitions, we can informally state our two problems:

Tandem Repeat History : Given the sequence of one approximate tandem re-

peat and its minimal pattern size, recover its history of amplifications and

mutations.

The actual input is given under the form of a multiple alignement with k

columns and as many lines as there are copies in the repeat. If the sequence

has lengt n, the alignment contain n/k lines. When only substitutions are al-

lowed in the alignment, the alphabet of T is the DNA alphabet and k is the

motif length. It is the case of the alignment of Figure 2. When indels are also
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considered like in the alignment of Figure 1, then the alphabet is the original

alphabet Σ plus the symbol − that denotes insertions or deletions in some

copies and k is the consensus size of the motif including indels columns. In

that case the sequence T is the concatenation of the lines of the alignment

and is written over Σ ∪ {−}. In both cases, the notions of amplifications and

contractions remain the same.

Tandem Repeat Allele Alignment : Given two allele sequences of the same

polymorphic tandem repeat locus, compute an optimal alignment between

the two sequences considering point mutations, as well as amplification and

contraction events.

2. History of a Tandem Repeat

Given the sequence of an approximate tandem repeat and a minimal pattern size, we

want to recover the series of events that led to the present sequence. This problem

resembles the one of Phylogenetic Reconstruction. For this problem, given

a set of sequences of the same gene or protein from different species, one wants to

recover the evolutionary tree that led to the apparition of the actual species from an

ancestral one by a series of speciations (i.e., division of a species in two). The present

sequences are associated with leaves and ancestral species with internal nodes of

the tree. In our setup, amplifications replace speciations and can have an arity m

greater than two (thereby creating m-ary branching). A natural question arises: can

one represent the history of a tandem repeat by a tree? It is in general not the case

since subsequent amplifications/contractions can act on sequence segments that are

not in phase according to the minimal pattern size (cf. the second amplification in

Figure 2). In other words for a given pattern size k, all amplifications may not start

at position 1+jk for some integer j. To restrict to histories that can be depicted by

a tree, one has to limit the starting positions of amplifications to those that respect

the pattern phase. This is the Fixed Boundary constraint [4]. Most researchers

envisaged the history problem, which was first proposed by Fitch [21], with this

restriction, since they consider the case of tandemly repeated genes where it seems

to apply.

Logically, researchers harbored their formalizations from the field of phylogeny

reconstruction and considered the problem as an optimization problem with two

different criteria. The first criterion is the maximum of parsimony; one searches

for a tree with sequences labeling internal nodes that minimize the number of

evolutionary events. The second is minimum evolution and gives rise to distance-

based approaches which search for a tree that minimizes the distance between leaves,

but do not compute ancestral sequences. [21, 4, 47, 19, 31] followed the first line and

[47, 16, 17] gave algorithms for the second. Note that when one considers tree-like

histories as in phylogeny, the order of events is only partially known. Without

the help of a molecular clock, it is impossible to order events that lie in different

branches of the tree.



March 16, 2004 11:53 WSPC/112-IJFCS 00239

232 E. Rivals

All researches achieved on this subject assume that the minimum pattern size,

denoted k, is known and that the copies of the repeat have been aligned in a

multiple alignment (see Figure 1 for an example). In the case of the distance based

approach, the multiple alignment serves to compute a distance between any pair of

copies; the method takes as input the resulting distance matrix. This assumption

is real restriction since in a complex history there might be several patterns whose

sizes are different and not necessarily multiples of another. The problem of multiply

aligning sequences is in general NP-hard and thus, the history reconstruction relies

on an approximate solution. Finally, this requirement introduces circularity since

the multiple alignment itself and the determination of the pattern size depend on

the history of the repeat.

The last restriction imposed by all attempts made so far is that apart from point-

mutations only amplifications, but no contractions, occurred in the development

of a tandem repeat. The history depicts an always increasing repeat which gains

new copies at each amplification. From a biological point of view, it is known

that tandem repeats undergo multiple amplifications and contractions, but this

restriction allows not to consider infinite sequences of events. However for some

loci, the reconstructed history seems robust to deletions in the sense that after

the deletion of one copy, it still satisfies the constraint of a tandem repeat history.

Robustness is also proven when only amplification of order 1 occurred in the history.

After commenting on the different assumptions, we can state the problem more

formally. Unfortunately in the literature, most authors do not tackle with exactly

the same problem. Often the formalization is expressed in different ways and each

work investigates specific versions of the problem. Here, we introduce an unam-

biguous terminology and a unifying definition such that each version of the prolem

based on the parsimony criterion is an instance of this definition.

From now on, let k denote the minimum pattern size, T be the approximate

tandem repeat sequence, and M be the multiple alignment of the copies of T .

Let d be a metric on strings over Σ. Figure 1 shows such a multiple alignment

with n := 8 copies and k := 34 columns. We want to find backwards in time

the series of events that led to T from a single copy of an unknown pattern. The

history is the repetition of the following process: new identical and adjacent copies

were added by amplification and then diverged by point mutations. Recovering the

history backwards requires to reduce the number of copies to one. We introduce

the notion of reduction. A reduction rewinds the process described above. Indeed,

it chooses adjacent but (in general) not identical copies, rewinds the differences

between copies by point mutations, and contracts the now identical copies. To a

reduction of order i and arity m, denoted ri,m, that transforms u1 . . . um into

u is associated a cost function of the form: C(ri,m) :=
∑

j d(uj , u) +A(i, m) where

A(i, m) is a cost function for an amplification of order i and arity m. The choice

of an additive function could be discussed, but seems natural since the genetic

events do not occur at the same time and are based on different and independent

molecular mechanisms. The reconstruction of a history by successive reductions for
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Fig. 3. Reconstruction of a tandem repeat history by successive reductions. The basic motif size is k := 4.
The history contains three reductions, each combines contractions and mutations if the reduced copies are not
identical. The merged copy resulting from the second reduction has a subset of symbols at the first position,
while the one of the last reduction has a subset of symbols at the second position. The first ambiguity is resolved
in the next reduction and does not appear anymore at the root.

From now on, let k denote the minimum pattern size, T be the approximate tandem repeat sequence,
and M be the multiple alignment of the copies of T . Let d be a metric on strings over Σ. Figure 1
shows such a multiple alignment with n := 8 copies and k := 34 columns. We want to find backwards
in time the series of events that led to T from a single copy of an unknown pattern. The history is the
repetition of the following process: new identical and adjacent copies were added by amplification and
then diverged by point mutations. Recovering the history backwards requires to reduce the number
of copies to one. We introduce the notion of reduction. A reduction rewinds the process described
above. Indeed, it chooses adjacent but (in general) not identical copies, rewinds the differences between
copies by point mutations, and contracts the now identical copies. To a reduction of order i and
arity m, denoted ri,m, that transforms u1 . . . um into u is associated a cost function of the form:
C(ri,m) :=

∑

j d(uj , u) + A(i, m) where A(i, m) is a cost function for an amplification of order i and
arity m. The choice of an additive function could be discussed, but seems natural since the genetic events
do not occur at the same time and are based on different and independent molecular mechanisms. The
reconstruction of a history by successive reductions for the sequence of Figure 2 is illustrated in Figure 3.
In the first reduction from the bottom, the contracted copies have length 2k and are identical (u1 = u2).
Thus, they are replaced by the same motif u (i.e., u = u1 = u2) and the term

∑

j d(uj , u) equals zero
in the reduction cost. In the second reduction, three non identical copies are replaced either by tagc or
by tatc. In the first case,

∑

j d(uj , u) equals one since two among the reduced copies are tagc, while in
the second case, only one reduced copy is tatc and thus

∑

j d(uj , u) = 2.

Definition 3 (Maximum Parsimony Tandem Repeat History (MP-TRH)). Let T be a tandem
repeat sequence containing n approximate copies of a motif, k be an integer, M be a multiple alignment
of k columns and n lines, such that the i-th line contains the i-th copy of T with possibly some indels, and
C be a cost function for reductions. The Maximum Parsimony Tandem Repeat History problem
is to find the minimum cost series of reductions that convert M into a single copy of length k. (The
multiple alignment is reduced until a single line is left.)

This series of reductions gives a putative reverse history for T and an associated ancestral pattern. k
is also called the repeat unit length and the size of the problem is kn. We denote the n copies of the
tandem repeat s1, . . . , sn.

Fig. 3. Reconstruction of a tandem repeat history by successive reductions. The basic motif size
is k := 4. The history contains three reductions, each combines contractions and mutations if
the reduced copies are not identical. The merged copy resulting from the second reduction has a
subset of symbols at the first position, while the one of the last reduction has a subset of symbols
at the second position. The first ambiguity is resolved in the next reduction and does not appear
anymore at the root.

the sequence of Figure 2 is illustrated in Figure 3. In the first reduction from the

bottom, the contracted copies have length 2k and are identical (u1 = u2). Thus,

they are replaced by the same motif u (i.e., u = u1 = u2) and the term
∑

j d(uj , u)

equals zero in the reduction cost. In the second reduction, three non identical copies

are replaced either by tagc or by tatc. In the first case,
∑

j d(uj , u) equals one since

two among the reduced copies are tagc, while in the second case, only one reduced

copy is tatc and thus
∑

j d(uj , u) = 2.

Definition 3 (Maximum Parsimony Tandem Repeat History (MP-

TRH)). Let T be a tandem repeat sequence containing n approximate copies of

a motif, k be an integer, M be a multiple alignment of k columns and n lines, such

that the i-th line contains the i-th copy of T with possibly some indels, and C be

a cost function for reductions. The Maximum Parsimony Tandem Repeat History

problem is to find the minimum cost series of reductions that convert M into a

single copy of length k. (The multiple alignment is reduced until a single line is

left.)

This series of reductions gives a putative reverse history for T and an associated

ancestral pattern. k is also called the repeat unit length and the size of the problem

is kn. We denote the n copies of the tandem repeat s1, . . . , sn.

Variations Around a Theme.

Some works [4, 31] consider a multiple alignment with insertions and deletions. This

means that in each line k is the number of columns but not the copy’s length. Other

authors consider that copies differ only by mismatches/substitutions; in their case,
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k is the number of columns in the alignment as well as the copy’s length. In the first

and second cases respectively, the authors use the Hamming and the Levenshtein

distances on Σ∗. When one considers the Hamming distance, one usually discards

all columns of the alignment that contain indels. In the case of divergent genes, the

number of columns left, k, may be much less than the lengths of the genes that

were amplified. In that case, k is not the biological pattern size.

Even if Tang and coworkers [47] include a general cost function in their formal-

ization, all algorithms published so far including theirs only account for differences

between copies, but not for amplifications (i.e., in the reduction cost, the function

A(i, m) is always equal to 0).

A major constraint is the Fixed Boundary constraint which specifies that am-

plifications start only in the first column of the alignment. From the computational

view-point, it constrains strongly the problem, since many alternative contractions

starting at different positions in T , i.e., columns in M , would yield the same re-

sult. Also, when boundaries are not fixed, the history cannot be represented by

a tree; one needs a more complex structure. From the biological point of view,

many tandem repeats do have not an integer, but rather a truly rational number

of copies, showing that boundaries of amplifications vary. Nevertheless, when con-

sidering tandemly repeated genes, the currently accepted biological model enforces

fixed boundaries for amplifications.

Definition 4 (Fixed Boundary Maximum Parsimony Tandem Repeat His-

tory (FBMP-TRH)). This problem is identical to FBMP-TRH except that re-

ductions start at a position 1 + jk for some 0 ≤ j ≤ n − 2.

In each section, we will precise exactly which version of the problem is examined.

Under the criterion of Minimum Evolution, the problem is called Minimum Evo-

lution Tandem Repeat History and is defined in Section 2.6, where two greedy

and one exact algorithm are presented. Its complexity class is unknown. In sum-

mary, in the Maximum Parsimony case we face a NP-hard problem for which a

2-approximation, a Polynomial Time Approximation Scheme (PTAS), and several

greedy algorithms have been described.

2.1. Benson and Dong’s Approximation and Greedy Algorithms.

[4] is the only reference where the general MP-TRH problem with variable bound-

aries is investigated; the paper also deals with the restricted version with fixed

boundaries and amplifications of arity 2 (these are termed “binary duplications”

in the paper). Their cost function accounts for the Levenshtein distance between

copies and charges no cost for amplifications; that is d := dL and for any order i

and arity m, A(i, m) := 0. The authors provide a greedy algorithm for the general

problem, a 2-approximation, and two ways of computing lower bounds. They also

report that the greedy algorithm performs in general better than the approximation
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and is close to the lower bounds. In their paper, the word “contraction” means a

reduction.

We describe the greedy algorithm and the 2-approximation which is based on

an ordered spanning tree built on the tandem repeat copies. Before that, we give a

little correction of the cost function and of the reduction ruleb.

When a reduction of arity m is applied to the multiple alignment M , a merged

copy replaces the m reduced copies. At a column j, differences between the con-

tracted copies may suggest several characters for j-th position of the merged copy.

In a reduction step, Benson and Dong authorize such a position to store a set of

putative ancestral symbols. To compute optimal ancestral characters, one needs to

count for each possible symbol its number of occurrences in the j-th column of the

contracted copies and to store the set of all symbols having the majority at the j-th

position of the merged copy. If one then chooses any symbol having the majority,

say x, for the j-th position of the merged copy, the number of point mutations that

must be accounted for is given by: m − count[x] where the vector count stores the

counts mentioned above. Indeed, each contracted copy whose j-th character differs

from x requires a single point mutation. The cost function in [4] does not consider

the relative counts of the characters at a given position; this leads to an incorrect

number of mutations, i.e., an incorrect cost.

2.1.1. A Greedy Algorithm for MP-TRH.

The greedy algorithm iteratively applies the reduction with the lowest cost ratio;

it prefers the reduction with highest arity and breaks other ties arbitrarily. The

cost ratio of a reduction is defined as:
C(ri,m)
k(m−1) , i.e., the reduction cost over the arity

minus one times the unit length k.

When the arity of reductions is restricted to 2, the greedy algorithm takes

O(kn3) time and when any arity is allowed it takes O(kn3 log(n)). Let us first

explain the complexity for the restricted case. The cost for each possible reduction

is computed for increasing order between 1 and bn
2 c. For order i, there are reductions

starting at all columns on line j such that 1 ≤ j ≤ (n− 2ik) and at column one on

line (n− 2ik) + 1. In the left to right order, the cost of reductions whose substrings

overlap by all but the first and last characters can be deduced in O(1). Thus, all

costs can be obtained in O(kn) time. For each reduction step, the computation

takes O(kn2) and as there are at most n − 1 steps the complexity in O(kn3). In

the case of unrestricted arity, the algorithm is more complex since for a given order

i and a given position, the costs for arity m can be deduced from those of arity

m − 1 in O(1). At most n/m costs are updated; the complexity for each step and

the total complexity become O(kn2 log(n)) and O(kn3 log(n)), respectively.

bG. Benson told us he also noticed this error and corrected it in his algorithms.
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number of point mutations that must be accounted for is given by: m−count[x] where the vector count
stores the counts mentioned above. Indeed, each contracted copy whose j-th character differs from x
requires a single point mutation. The cost function in [BD99] does not consider the relative counts of
the characters at a given position; this leads to an incorrect number of mutations, i.e., an incorrect
cost.

A Greedy Algorithm for MP-TRH. The greedy algorithm iteratively applies the reduction with
the lowest cost ratio; it prefers the reduction with highest arity and breaks other ties arbitrarily. The

cost ratio of a reduction is defined as:
C(ri,m)
k(m−1) , i.e., the reduction cost over the arity minus one times

the unit length k.

When the arity of reductions is restricted to 2, the greedy algorithm takes O(kn3) time and when
any arity is allowed it takes O(kn3 log(n)). Let us first explain the complexity for the restricted case.
The cost for each possible reduction is computed for increasing order between 1 and b n

2 c. For order i,
there are reductions starting at all columns on line j such that 1 ≤ j ≤ (n− 2ik) and at column one on
line (n − 2ik) + 1. In the left to right order, the cost of reductions whose substrings overlap by all but
the first and last characters can be deduced in O(1). Thus, all costs can be obtained in O(kn) time. For
each reduction step, the computation takes O(kn2) and as there are at most n−1 steps the complexity
in O(kn3). In the case of unrestricted arity, the algorithm is more complex since for a given order i
and a given position, the costs for arity m can be deduced from those of arity m − 1 in O(1). At most
n/m costs are updated; the complexity for each step and the total complexity become O(kn2 log(n))
and O(kn3 log(n)), respectively.

Example : Computation of the reduction costs for reduction of order 1 and arity 2. The greedy algorithm
computes a table H with k columns and n−1 lines, such that for a position j of T , the entry H [j/k+1, j
mod k] equals 0 if the character at position j equals the one k position further (i.e., if T [j] = T [j + k]),
and 1 otherwise. The table H for the sequence of Figure 2 is given in Figure 4. The cost C(j) of the

reduction starting at position j in T is given by C(j) :=
∑k−1

l=0 H [(j + l)/k + 1, (j + l) mod k]. The
cost for the reduction starting at position j + 1, which overlaps the one starting at position j by all
but the first and last positions, can be deduced by substracting and adding the corresponding cells of
H in constant time. Thus, the whole computation takes O(nk) time.

H 1 2 3 4

1 0 1 0 0

2 0 0 0 0

3 1 0 0 0

4 1 0 0 0

5 1 0 0 0

Fig. 4. Table H for the sequence gatagctagctatctagctatcta with k := 4 and n := 6.

A 2-approximation for Fixed Boundaries Order-1 Amplifications. The approximation pre-
sented in [BD99] is for what the authors call the “restricted problem”: when amplifications have a fixed
boundary and their order is 1. In the restricted case, the history can be represented by a leaf and edge
ordered and labeled tree whose leaves represent the copies of the tandem repeats. Such a tree is called a
duplication tree. Internal nodes are labelled by ancestral copies. To an edge (tj , tl), where tj , tl ∈ Σk

are the labels of the linked nodes, is associated the cost d(tj , tl).

Fig. 4. Table H for the sequence gatagctagctatctagctatcta with k := 4 and n := 6.

Example : Computation of the reduction costs for reduction of order 1 and arity 2.

The greedy algorithm computes a table H with k columns and n−1 lines, such that

for a position j of T , the entry H [j/k+1, j, k] equals 0 if the character at position j

equals the one k position further (i.e., if T [j] = T [j+k]), and 1 otherwise. The table

H for the sequence of Figure 2 is given in Figure 4. The cost C(j) of the reduction

starting at position j in T is given by C(j) :=
∑k−1

l=0 H [(j + l)/k +1, (j + l), k]. The

cost for the reduction starting at position j + 1, which overlaps the one starting at

position j by all but the first and last positions, can be deduced by substracting and

adding the corresponding cells of H in constant time. Thus, the whole computation

takes O(nk) time.

2.1.2. A 2-approximation for Fixed Boundaries Order-1 Amplifications.

The approximation presented in [4] is for what the authors call the “restricted

problem”: when amplifications have a fixed boundary and their order is 1. In the

restricted case, the history can be represented by a leaf and edge ordered and labeled

tree whose leaves represent the copies of the tandem repeats. Such a tree is called

a duplication tree. Internal nodes are labelled by ancestral copies. To an edge

(tj , tl), where tj , tl ∈ Σk are the labels of the linked nodes, is associated the cost

d(tj , tl).

The proof relies on the concept of ordered spanning tree (OST). Given an

ordered set of nodes V := {1, . . . , n}, an OST is a spanning tree on V such that for

any two edges (b1, e1) and (b2, e2), b1 < e1, b2 < e2, we have (b1 − b2)(b1 − e2)(e1 −

e2)(e1 − b2) ≥ 0. In other words, if the nodes are placed on a line, the edges are on

the same side of the line on the plan and do not cross each other. An example of

an OST is given in Figure 5. We will consider OSTs on the ordered set of copies,

s1, . . . , sn and assign d(sj , sl) as the distance between nodes j and l, 1 ≤ j, l ≤ n.

For both types of trees, the cost of a tree is the sum of the costs of its edges.

An ordered spanning tree B on s1, . . . , sn describes the structure of a unique

duplication tree. It is possible to construct the latter from the former in linear time;

this is illustrated in Figure 5. The leaves of the two trees are the same. To construct

the duplication tree, one starts from a node of degree one in the OST and follow

the edges. From each edge one reaches a new leaf, if edge entering that leaf go on
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The proof relies on the concept of ordered spanning tree (OST). Given an ordered set of nodes
V := {1, .., n}, an OST is a spanning tree on V such that for any two edges (b1, e1) and (b2, e2), b1 < e1,
b2 < e2, we have (b1 − b2)(b1 − e2)(e1 − e2)(e1 − b2) ≥ 0. In other words, if the nodes are placed on a
line, the edges are on the same side of the line on the plan and do not cross each other. An example of
an OST is given in Figure 5. We will consider OSTs on the ordered set of copies, s1, . . . , sn and assign
d(sj , sl) as the distance between nodes j and l, 1 ≤ j, l ≤ n. For both types of trees, the cost of a tree
is the sum of the costs of its edges.

21 4 6 83 5 7

2

4

1 5

7

8

1

Fig. 5. An ordered spanning tree on n := 8 nodes (in curved lines) and its associated duplication tree drawn
(in straight lines). The number at an internal nodes represents the leaf label that has been lifted up to that
node. In the lifted duplication tree, only edges mark by dashed lines have non-zero cost; all other edges have
the same label at each extremity and cost zero.

An ordered spanning tree B on s1, . . . , sn describes the structure of a unique duplication tree. It
is possible to construct the latter from the former in linear time; this is illustrated in Figure 5. The
leaves of the two trees are the same. To construct the duplication tree, one starts from a node of degree
one in the OST and follow the edges. From each edge one reaches a new leaf, if edge entering that
leaf go on the same side of the line, one creates an internal node, branches the leaf on one side and
the subtree constructed so far on the other side. Otherwise, the branching of the leaf depends on the
weigths of the edges. For leaf number seven for instance, the internal node links it to leaf 6 because
d(s6, s7) < d(s7, s8). If d(s6, s7) > d(s7, s8) one would have created two internal nodes and put leaves
7 and 8 in the same subtree, and leaf 6 at the end of the other branch. This situation happens for leaf
5 and at this step the second internal node is the root of the tree.

If in the duplication tree, one assigns to each internal node the label of one of the leaves in its
subtree, one obtains a duplication tree B∗ whose cost equals the one of the ordered spanning tree.
We propose to call B∗ a lifted duplication tree. The duplication tree given in Figure 5 with the
leaf labels associated to internal nodes is a lifted duplication tree. The same idea of lifting the leaf
labels up the tree was proposed by Wang and coworkers [WJL96] to compute a 2-approximation for
the Phylogenetic Multiple Alignment problem and their approximate tree was termed a lifted
tree.

Proof (of the 2-approximation.). Let P be the optimal duplication tree, and R be a depth-first traversal
of P . As each edge of P is visited twice in R we have cost(R) = 2 × cost(P ). Let SR be the cycle
obtained by visiting the leaves in order and cycling from leaf sn to leaf s1. As d satisfies the triangle
inequality, cost(SR) ≤ cost(R). Now, removing any edge in SR yields an ordered spanning tree TR.
Thus, we have cost(TR∗) < cost(SR) ≤ cost(R) = 2 × cost(P ); TR∗ is a 2-approximation of P . ut

Fig. 5. An ordered spanning tree on n := 8 nodes (in curved lines) and its associated duplication
tree drawn (in straight lines). The number at an internal nodes represents the leaf label that has
been lifted up to that node. In the lifted duplication tree, only edges mark by dashed lines have
non-zero cost; all other edges have the same label at each extremity and cost zero.

the same side of the line, one creates an internal node, branches the leaf on one side

and the subtree constructed so far on the other side. Otherwise, the branching of

the leaf depends on the weigths of the edges. For leaf number seven for instance, the

internal node links it to leaf 6 because d(s6, s7) < d(s7, s8). If d(s6, s7) > d(s7, s8)

one would have created two internal nodes and put leaves 7 and 8 in the same

subtree, and leaf 6 at the end of the other branch. This situation happens for leaf

5 and at this step the second internal node is the root of the tree.

If in the duplication tree, one assigns to each internal node the label of one of

the leaves in its subtree, one obtains a duplication tree B whose cost equals the

one of the ordered spanning tree. We propose to call B a lifted duplication tree.

The duplication tree given in Figure 5 with the leaf labels associated to internal

nodes is a lifted duplication tree. The same idea of lifting the leaf labels up the tree

was proposed by Wang and coworkers [51] to compute a 2-approximation for the

Phylogenetic Multiple Alignment problem and their approximate tree was

termed a lifted tree.

Proof. [of the 2-approximation.] Let P be the optimal duplication tree, and R

be a depth-first traversal of P . As each edge of P is visited twice in R we have

cost(R) = 2 × cost(P ). Let SR be the cycle obtained by visiting the leaves in

order and cycling from leaf sn to leaf s1. As d satisfies the triangle inequality,

cost(SR) ≤ cost(R). Now, removing any edge in SR yields an ordered spanning

tree TR. Thus, we have cost(TR) < cost(SR) ≤ cost(R) = 2 × cost(P ); TR is a

2-approximation of P .

An example of an optimal duplication tree with n := 8 copies, its depth-first

traversal and a trivial cycle (i.e., corresponding in the proof to P , R, and SR, re-

spectively) are given in Figure 6. Note that the topology of TR varies very little with

the input (since TR equals SR minus one edge) and presents no biological interest
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Fig. 6. An optimal duplication tree on n := 8 leaves (straight lines), a depth-first traversal of it (dashed lines),
and a simple cycle on the leaves (curved lines).

An example of an optimal duplication tree with n := 8 copies, its depth-first traversal and a trivial
cycle (i.e., corresponding in the proof to P , R, and SR, respectively) are given in Figure 6. Note that
the topology of TR∗ varies very little with the input (since TR equals SR minus one edge) and presents
no biological interest in itself. On the opposite, a true minimum OST and its associated duplication
tree provide an informative approximate solution. Benson and Dong exhibit a dynamic programming
recurrence to compute the minimum OST (on all possible intervals of lines in M) in O(kn2 + n3). We
will see below that Tang et al. [TWY02] also use the lifting technique to obtain a 2-approximation for
this problem in O(n2(k + n3)).

Open questions:

– Is MP-TRH with variable boundaries approximable?

2.2 Tang et al. Dynamic Programming Approach.

In their framework, Tang and coworkers [TWY02] allow only duplications, that is amplifications of
variable order but of arity 2, and fixed boundaries. They generalize the duplication tree introduced
by [BD99] in a duplication model to enclose information relative to duplications of order higher
than one. We first describe this model. We present their dynamic programming scheme for what they
call the Single Gene Duplication problem, that is FBMP-TRH restricted to arity 2 and order 1.
(Actually, the authors do not really tackle with their general model.) In Benson and Dong’s vocabulary,
this corresponds to the “restricted” FBMP-TRH. The dynamic programming scheme is flexible and
by combining it with the lifting technique, they obtain a 2-approximation and claim a PTAS can be
achieved with the same technique. The authors also give an algorithm for the distance-based problem,
but we will delay its presentation until Section 2.6.

The Duplication Model. The duplication model is a duplication tree (from [BD99]) with higher order
duplications. A duplication of order i duplicates i adjacent copies, say s1 . . . si, into s1,l . . . si,ls1,r . . . si,r

3

where sj,l, sj,r denote the right and left children of sj . As a duplication tree is ordered, the left to right
order of nodes represents the sequence order of the copies; this is valid for both internal nodes and

3 Note that there are no commas in the notation; it means that the copies are adjacent on the chromosome.

Fig. 6. An optimal duplication tree on n := 8 leaves (straight lines), a depth-first traversal of it
(dashed lines), and a simple cycle on the leaves (curved lines).

in itself. On the opposite, a true minimum OST and its associated duplication tree

provide an informative approximate solution. Benson and Dong exhibit a dynamic

programming recurrence to compute the minimum OST (on all possible intervals

of lines in M) in O(kn2 + n3). We will see below that Tang et al. [47] also use the

lifting technique to obtain a 2-approximation for this problem in O(n2(k + n3)).

Open question:

— Is MP-TRH with variable boundaries approximable?

2.2. Tang et al. Dynamic Programming Approach.

In their framework, Tang and coworkers [47] allow only duplications, that is ampli-

fications of variable order but of arity 2, and fixed boundaries. They generalize the

duplication tree introduced by [4] in a duplication model to enclose information

relative to duplications of order higher than one. We first describe this model. We

present their dynamic programming scheme for what they call the Single Gene

Duplication problem, that is FBMP-TRH restricted to arity 2 and order 1. (Ac-

tually, the authors do not really tackle with their general model.) In Benson and

Dong’s vocabulary, this corresponds to the “restricted” FBMP-TRH. The dynamic

programming scheme is flexible and by combining it with the lifting technique, they

obtain a 2-approximation and claim a PTAS can be achieved with the same tech-

nique. The authors also give an algorithm for the distance-based problem, but we

will delay its presentation until Section 2.6.

2.2.1. The Duplication Model.

The duplication model is a duplication tree (from [4]) with higher order dupli-

cations. A duplication of order i duplicates i adjacent copies, say s1 . . . si, into
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2 3 4 5 6 7 81

Fig. 7. An example of a duplication model or of an unrooted duplication tree with n := 8 leaves. Each node
represents a copy of the tandem repeat, either an ancestral one at an internal node or a present one at a leaf.
Subsets of internal nodes that are duplicated together by a duplication of order 2 are surrounded by a dashed
line. These correspond to blocks in the terminology of [TWY02].

leaves. If we place a duplication of order i in such a tree, it must take i nodes representing adjacent
copies and create i left and i right children. Therefore for j < h ≤ i, the edge connecting sj and its
right child sj,r crosses all edges connecting sh and its left child sh,l, i.e., (sh, sh,l). This the only way
two edges can cross in the model and it requires that i ≥ 2. Such a model is said to be consistent with
the ordering of the leaves/copies on the sequence. This is the main constraint that a tree must satisfy
to be a duplication model. Nodes involved in higher order duplications form a block and all blocks are
memorized in the duplication model. Figure 7 illustrates the notion of duplication model.

For a given duplication model, it is possible change the order of nodes to uncross all edges and obtain
a unique planar tree topology. Tang et al. name it the associated phylogeny. The term phylogeny means
a binary tree without order constraint that represents the evolution of genes/species associated with
its leaves. A way to answer our problem is to use a phylogenetic reconstruction method on the set of
copies without the order constraint, and check if the returned phylogeny has an associated duplication
model. There exist efficient heuristics for phylogenetic reconstruction (for instance [Gas97]). Therefore,
Tang et al. investigate what we call the Recognition problem, that is to find the duplication model
associated with a rooted phylogeny if it exists, and they give a O(n2) algorithm for it. Note that the
problem size is n, i.e., the number of leaves of the phylogeny. We do not describe their solution since
better algorithms have been published since then in [GHJMM03,ZMW02] (see Sections 2.4 and 2.5).

The Dynamic Programming Scheme. In [TWY02], the authors define the MP-TRH with fixed
boundaries with an arbitrary additive cost function for the reductions. However, the dynamic program-
ming scheme they present is further restricted to the FBMP-TRH with order 1 duplications only. In
this case, the duplication model has no edges crossing each other and is simply a tree on an ordered
set of leaves. In the remainder of this section, we use the word “tree” instead of “duplication model”
for simplicity. The authors consider the Hamming distance between words, and not the Levenshtein
distance as in [BD99].

Fig. 7. An example of a duplication model or of an unrooted duplication tree with n := 8 leaves.
Each node represents a copy of the tandem repeat, either an ancestral one at an internal node or
a present one at a leaf. Subsets of internal nodes that are duplicated together by a duplication of
order 2 are surrounded by a dashed line. These correspond to blocks in the terminology of [47].

s1,l . . . si,ls1,r . . . si,r
c where sj,l, sj,r denote the right and left children of sj . As a

duplication tree is ordered, the left to right order of nodes represents the sequence

order of the copies; this is valid for both internal nodes and leaves. If we place a

duplication of order i in such a tree, it must take i nodes representing adjacent

copies and create i left and i right children. Therefore for j < h ≤ i, the edge

connecting sj and its right child sj,r crosses all edges connecting sh and its left

child sh,l, i.e., (sh, sh,l). This the only way two edges can cross in the model and

it requires that i ≥ 2. Such a model is said to be consistent with the ordering

of the leaves/copies on the sequence. This is the main constraint that a tree must

satisfy to be a duplication model. Nodes involved in higher order duplications form

a block and all blocks are memorized in the duplication model. Figure 7 illustrates

the notion of duplication model.

For a given duplication model, it is possible change the order of nodes to uncross

all edges and obtain a unique planar tree topology. Tang et al. name it the associated

phylogeny. The term phylogeny means a binary tree without order constraint

that represents the evolution of genes/species associated with its leaves. A way

to answer our problem is to use a phylogenetic reconstruction method on the set

of copies without the order constraint, and check if the returned phylogeny has

an associated duplication model. There exist efficient heuristics for phylogenetic

cNote that there are no commas in the notation; it means that the copies are adjacent on the
chromosome.
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reconstruction (for instance [22]). Therefore, Tang et al. investigate what we call

the Recognition problem, that is to find the duplication model associated with a

rooted phylogeny if it exists, and they give a O(n2) algorithm for it. Note that the

problem size is n, i.e., the number of leaves of the phylogeny. We do not describe

their solution since better algorithms have been published since then in [23, 52] (see

Sections 2.4 and 2.5).

2.2.2. The Dynamic Programming Scheme.

In [47], the authors define the ME-TRH with fixed boundaries with an arbitrary ad-

ditive cost function for the reductions. However, the dynamic programming scheme

they present is further restricted to the FBMP-TRH with order 1 duplications only.

In this case, the duplication model has no edges crossing each other and is simply

a tree on an ordered set of leaves. In the remainder of this section, we use the

word “tree” instead of “duplication model” for simplicity. The authors consider the

Hamming distance between words, and not the Levenshtein distance as in [4].

Let s belong to Σk, i, j be integers such that 1 ≤ i ≤ j ≤ n and S, Sl, Sr be

subsets of Σk. A tree for an interval subset of the copies, si, . . . , sj , is said to span

the interval [i, j]. With the Maximum Parsimony criterion, each internal node is

labelled with a putative ancestral copy. We introduce a notation used below in the

recurrence. Let D([i, j]) be the cost of an optimal tree spanning [i, j]. Let D([i, j], s)

be the optimal cost of a tree spanning [i, j] and whose root is labelled by s. If i < j,

let an integer m satisfy i ≤ m < j and D([i, j], s, m) be the minimum cost of tree

spanning [i, j] whose root is labelled by s, and whose left and right subtrees span

[i, m] and [m + 1, j], resp. For s ∈ Σk, D([i, i], s) is initialized to 0 is s = si and to

infinity otherwise. It follows from these definitions that:

D([i, j]) = min
s∈S

D([i, j], s) (1)

D([i, j], s) = min
i≤m<j

D([i, j], s, m) (2)

D([i, j], s, m) = min
v∈Sl

(D([i, m], v) + d(s, v))

+ min
w∈Sr

(D([m + 1, j], w) + d(s, w)) (3)

A tree spanning the whole repeat can be recovered by backtracking through

the matrices from entry [1, n]. If one chooses S, Sl, Sr equal to Σk the returned

cost and tree are optimal, but the running time is exponential in k. Indeed, it is in

O(|Σ|2k(k+n3)) since computing all Hamming distances between any two strings of

length k is done in O(k × |Σ|2k) and filling the matrices for each of the n2 intervals

takes O(|Σ|2kn) time.

Now, if one restricts S, Sl and Sr in such a way that to an internal node is

associated the label of either its left or of its right child, the result is a lifted

duplication tree. By a lemma from [51], the cost of such tree is at most twice the

cost of an optimal tree. This gives a 2-approximation algorithm in O(n2(k + n3))
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time. The authors also report that the PTAS developed by Wang and Gusfield [49]

can be adapted to this problem.

The 2-approximation of [47] yields a lifted tree as the 2-approximation of [4]

obtained from the trivial cycle. The latter is more effective since it requires linear

time. Its improvement using the minimum OST is computed in only O(kn2 + n3)

time. Another remark is that the dynamic programming scheme delivers an optimal

solution in a time that is only exponential in k. Thus, FBMP-TRH with order 1

duplication is Fixed Parameter Tractable for parameter k. We refer to [15] for

details on Parameterized Complexity.

2.3. An Exhaustive Exploration Approach

Elemento and coworkers [18, 19] investigate the same problem as in [47]: recovering

the duplication tree of tandemly repeated genes. They define independently the con-

cept of duplication model and call it a partially ordered duplication history.

They name such an unrooted history a tandem duplication tree. The authors

argue that the Fixed Boundaries restriction applies here, because the main mecha-

nism of gene amplification is unequal recombination. They exhibit an exponential

algorithm, named DTExplore, that exhaustively searches the space of duplication

histories. The algorithm works for a limited number of copies, in the order of n = 10.

In addition to some applications, the algorithm is used to compare empirically the

number of phylogenies with n leaves with the number of duplication models with

n copies. The authors conclude that, although the number of duplication models

seems exponential, it represents a small fraction of the number of phylogenies. This

question is addressed later on in [23] and is detailed in Section 2.4. We also present

their O(n2) solution for the recognition problem as defined in Section 2.2.1.

Like in [47], authorized amplifications are duplications (i.e., of arity 2) of variable

order. In their vocabulary, a duplication of order x is denoted an x-duplication.

The distance measure between gene copies is the Hamming distance and no cost is

charged for amplifications (i.e., d = dH and A(i, m) = 0 for all i, m).

2.3.1. An Exhaustive Search Strategy.

The algorithm DTExplore simulates the duplication process to explore in a depth-

first search manner the space of all duplication histories of n leaves. It starts with

a rooted tree with two leaves and applies a duplication of order x to obtain a tree

with 2+ x leaves. The process is iterated until the number of leaves reaches n. The

current phylogeny is given as input to Fitch’s algorithm [20] which computes its

Maximum Parsimony score (i.e., the optimal ancestral copies for all internal nodes).

The algorithm backtracks and duplications of any possible order are applied to visit

all topologies. DTExplore outputs the phylogenies with the minimal score.

This first version of DTExplore suffers from redundancy as it generates several

time the same rooted duplication model. An improvement is achieved by enabling

DTExplore to memorize which duplication model has already been visited. This is
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performed by encoding each model in a character string and storing all codes in

a prefix tree. Each generated topology is first encoded, searched for in the prefix

tree, and its maximum parsimony is evaluated only if it was not found in this data

structure. The speed improvement is drastic.

2.3.2. A Simple Recognition Algorithm.

Given the topology of a phylogeny on n leaves, the Recognition problem is to

decide if the topology also is a duplication model. Elemento et al. [19] report a

simple O(n2) algorithm for it. It iteratively reduces the phylogeny by replacing

the 2i leaves of an order i duplication by their fathers. At most n such steps are

performed, if all duplications were of order 1. At each step, to identify a possible

duplication, it searches for a subset of adjacent 2i leaves that are appropriately

intermingled. If this search fails, the phylogeny is not a duplication model and

the algorithm returns false. Otherwise, it stops with a tree reduced to a root and

answers true. The search is done in O(n) time at each step. After investigating the

combinatorics of duplication models, Gascuel et al. [23] improve the algorithm’s

complexity to O(n) (cf. Section 2.4).

2.4. Combinatorics of Duplication Trees

In the same framework than [19], Gascuel and coworkers [23] investigate the cardi-

nality, denoted rdt(n), of the set RDT(n) of rooted duplication trees with n leaves.

They exhibit a recurrence for it and show it is the double of the number of unrooted

duplication trees. They deduce an algorithm to uniformly sample duplication trees

and a linear time procedure for the Recognition problem. Here again, amplifica-

tions are of variable order and of arity 2.

2.4.1. Counting Duplication Trees.

We review the main recurrence for rooted duplication trees. To obtain this recur-

rence, the authors introduce the notion of an (l,i) duplication where i is the order

and l the number of copies located after the last copy involved in the duplication.

So, an (l, i) duplication duplicates i copies sn−l−i+1 . . . sn−l, where i and l satisfy

1 ≤ i ≤ n and 0 ≤ l ≤ n−2i. Given a rooted duplication tree R, an (l, i) duplication

is said to be visible if none of the 2i copies it created has been further duplicated

in R. Let P (n, l) be the subset of RDT(n) whose leftmost visible duplication is an

(l, i) duplication for some i such that 1 ≤ i ≤ (n−l)/2. Let p(n, l) be the cardinality

of P (n, l). By definition, for l > n − 2, P (n, l) = ∅, p(n, l) = 0 and p(2, 0) = 1.

Theorem 1. Let n > 2 and 0 ≤ l ≤ (n − 2). P (n, l) and ∪l+1
j=0P (n − 1, j) are in

one-to-one correspondence.

Proof. Let us denote the substring of 2i copies created by an (l, i) duplication in

the present sequence by sn−l−2i+1 . . . sn−l−isn−l−i+1 . . . sn−l. For all 1 ≤ f ≤ i,
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sn−l−i+f is the twin of sn−l−2i+f , i.e., they are offspring of the same father copy.

Let T ∈ P (n, l); deleting sn−l−i, the left child of the rightmost copy duplicated

by the (l, i) duplication, in T maps T to T ′. If i = 1 then the leftmost visible

duplication in T ′ is at the right of s′n−1−l and thus, T ′ is in P (n − 1, j) for some

j in 0 ≤ j ≤ l. If i > 1 the (l, i) duplication in T becomes the leftmost visible

duplication in T ′ and is an (l+1, i−1) duplication; so T ′ belongs to P (n−1, l+1).

As the transformation is reversible the mapping is a bijection.

As all trees have a leftmost visible duplication, if we denote the cardinality of

RDT(n) by rdt(n), we have rdt(n) =
∑n−2

l=0 p(n, l). Combined with the recurrence

of Theorem 1 it provides a way to compute rdt(n).

Although the root of a duplication tree is necessarily located on the path between

the left- and right-most copies ([21]), not all edges on this path are possible root

locations. First, the root cannot be below some duplication of order strictly greater

than 1. Second, it comes out that in average only two locations are possible. Hence,

the surprising result that the number of unrooted duplication trees with n leaves

equals rdt(n)/2. Asymptotically, this cardinality behaves like ( 27
4 )

n
when n tends

towards infinity.

2.4.2. An O(n) Recognition Algorithm.

The concept of visible duplication allows to improve the recognition algorithm de-

scribed in Section 2.3.2. It proceeds by iteratively agglomerating leaves of a dupli-

cation (such leaves belong necessarily to a visible duplication). The improvement

consists in choosing the leftmost visible duplication at each step; an amortized

analysis shows that all steps take O(n) time alltogether. For this, the scan for a

duplication proceeds from left to right and the endpoints of already encountered

blocks are memorized.

Open questions:

— In the case of fixed boundaries, study the number of amplification trees when

amplifications of variable arity are allowed.

2.5. Complexity, Approximability and Other Results

In [31], Jaitly et al. consider the FBMP-TRH, with a maximum arity 2, with the

Levenshtein distance between strings d := dL, and no cost for amplifications. They

proved that this restriction of FBMP-TRH is NP-hard by reducing it to the Max-

Cut problem. They exhibit a PTAS that uses the lifting technique to partition

the topology and exact optimization by dynamic programming to compute optimal

labels for subtrees of constant size. A detailed sketch of the proof is given in [31]

and it relies on previous difficult approximation results for the Phylogenetic

Multiple Alignment problem by Wang and coworkers [51, 49, 50]. As in [4], the
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authors notice the relation of FBMP-TRH with the Ordered Leaves Steiner

Tree problem. They show their algorithm also is a PTAS for the latter.

Zhang et al. [52] describes a O(n) algorithm for the Recognition problem from

rooted phylogenies (with duplications of variable order, the distance used over Σ∗

is not given). Assume the leaves of the phylogeny are numbered in order from 1 to

n. Their method identifies for all leaf j := 1, . . . , n the internal nodes belonging to

duplications of order ≥ 2 (to blocks in the terminology of Tang et al.) that allow

leaves j and j + 1 to be put next to each other in the duplication model. For this,

they associate to each node v the pair (l(v), r(v)) where l(v), r(v) denote resp. the

smallest and largest leaf numbers in the subtree of v. Fast identification of block’s

nodes is achieved by comparing pairs (l(v), r(v)) of nodes on the path to leaf j

to those of nodes at the same level on the path to leaf j + 1. Given an unrooted

phylogeny, the search for a duplication model has to be performed for all O(n)

possible root locations because in practice one infers unrooted phylogeny. Thus,

although in linear time, their algorithm is less effective than the one of Gascuel et

al. [23] that deals with both case of rooted and unrooted phylogenies.

Zhang and coworkers also proposed a greedy search strategy for the FBMP-

TRH. It infers a phylogeny with a traditional reconstruction method, checks if it

is associated to a duplication model, and if not attempts a transformation of the

topology (like a Nearest Neighbor Interchange). The two last steps are iterated

until a duplication model is found. Such a strategy was first developed in the field

of phylogeny reconstruction. The authors report it performs better than Benson

and Dong’s greedy algorithm or Tang et al.’s Window method on three real data

cases.

Open questions:

— Does the MP-TRH with variable boundaries admit a PTAS?

— For some parameters, are these problems fixed parameter tractable in the sense

of Fellows and Downey’s theory of parameterized complexity [15]?

— Improve the Zhang et al.’s greedy strategy by inferring directly a duplication

model and invent a transformation operation that allows to visit each possible

duplication model on n leaves.

2.6. Minimum Evolution Approaches

As mentioned in the introduction, the criterion of Minimum Evolution borrowed

from Phylogeny leads to a formalization of the problem that differs from MP-TRH.

The data is a matrix D giving the pairwise distance between any pair of copies in the

sequence T and the ordered list of copy numbers. The output is a duplication tree

whose sum of the branch lengths is minimum. We call this problem the Minimum

Evolution Tandem Repeat History (ME-TRH).

This formalization implicitly considers fixed boundaries since the history is rep-

resented by a tree. It is thus not as general as MP-TRH. Moreover, as the input is a
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distance matrix, the sequences are disregarded in the remaining of the algorithms.

The link with combinatorics and algorithmics on words resides only in the compu-

tation of the input pairwise distances. Nevertheless, we include a section on these

methods for the sake of completeness and because such approaches were shown to

be reliable in practice [16].

The two methods presented here, DTScore from [16] and Window from [47],

optimize a local criterion on the tree and are based on the same algorithmic scheme.

A current list of leaves in the tree is maintained and initialized to the original list

of copies. The methods iterate an agglomeration step that replaces a subset of 2i

adjacent leaves resulting from an order i duplication by new leaves representing

their parent copies. Such a subset of 2i leaves is called a window in [47]. Entries of

the distance matrix corresponding to the deleted copies are removed and entries for

the parent copies are inserted. Entries for the parent copies are the average of their

children distances. The algorithms proceed until 2 or 3 leaves are left. The window

is chosen to maximize a score function. DTScore and Window differ in the choice

of this function. Window considers the average of the Hamming distances between

twin copies j and j + i for all possible j. This is known to produce the correct tree

if the data respect the Molecular Clock hypothesis, i.e., if evolution proceeded at

the same pace in each branch of the tree. In practice, biologists proved it is not often

the case. In DTScore, the score of a pair (j, j + i) is the number of times j and j + i

are next to each other in every possible quartet of leaves (j, j + i, l, m) according to

the Four-Point Condition ([11]). The score of a window is the minimum of the

scores of its pairs; the window with the maximum score is selected. This scheme

works even if the Molecular Clock is not respected.

Empirical tests on pseudo-randomly generated trees and sequences confirm

DTScore’s improved ability to recover the correct tree compared to Window and to

maximum parsimony approaches (cf. [16]). For both programs, the time complex-

ities is O(n4). Elemento and Gascuel [17] consider the ME-TRH under the global

criterion of the ordinary least square errors. They propose an exact algorithm in

O(n3) time and O(n2) space when the duplication order is restrained to 1.

Open questions:

— Find an algorithm to optimize ordinary least square errors when the order is

variable.

2.7. Biological Validations

Most of the literature referenced for the Tandem Repeat History problems in-

cludes tests on real data sets, mainly on clusters of tandemly repeated human genes.

For instance, Zinc Finger genes in [47, 52], genes for Olfactory Receptors and the

internal tandem repeat of a mucin gene MUC5 in [52], as well as two immunological

gene loci, TRGV and IGLC, in [19]. In all cases, the authors found the computed

histories were consistent with what is known about the evolution of the gene family

and most histories include mainly order 1 duplications.
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The most detailed discussion on biological validation is in [19]. The mechanism

for gene duplication is hypothesized to be unequal recombination. In the case of the

TRGV locus where n := 9, the history reconstructed with DTExplore is also found

by DNAPENNY, an exact phylogenetic reconstruction method ([28]), although the

probability of finding a duplication model when exploring the space of phylogenies

is already low for n = 9 (see Section 2.4). Moreover, in the tree for the TRGV

locus, the most recent duplication has order 2 and corresponds to a polymorphism

observed in some human populations. Indeed, the two additional gene copies are

missing in individuals of the Tunisian, Lebanese, French, Black-African and Chi-

nese populations. These two evidences combined with a bootstrap test constitute a

strong validation of the model with respect to the mechanism of duplication.

With the availability of complete genomes, numerous tandem gene clusters are

discovered and represent potential data for such analysis. We believe biologists will

investigate tandem duplication history once the methods described here have been

advertised more widely.

3. Allele Alignment

Among polymorphic tandem repeats, hypervariable minisatellites cumulate varia-

tions in their number of copies, as well as in the sequence of the repeats. They

belong to the most polymorphic markers: at a single locus, one encounters much

more alleles than for other loci. Hence, the numerous differences between alleles

provide us with detailed information on the evolutionary processes at work. To un-

derstand variation in the sequences of a tandem repeat locus, we need to be able at

least to compare alleles in a pairwise manner. If one can measure the dissimilarity

by a metric, it becomes possible to infer evolutionary relationships of a set of alleles

using distance-based phylogenetic methods. Even better would be to simultaneously

align several alleles and then use Maximum Parsimony phylogenetic reconstruction

to compute a tree with ancestral alleles and to count mutations along the branches.

In this section, we consider the problem of Pairwise Allele Alignment. At

present, Multiple Allele Alignment remains an interesting future work.

Brard and Rivals [7, 9] introduced this problem and noted that the events are

not commutative, which introduces a major difficulty compared to classical Se-

quence Alignment [45]. In the case of amplifications and contractions of order 1

and arity 2, they describe an exact algorithm in O(max(m, n)4) time, where n, m

denote the sequences lengths. The alignment distance is a metric and can serve as

input for distance-based phylogenetic reconstruction. In [9], the method is applied

to a set of alleles from the MSY1 locus, a minisatellite on the human Y chromosome.

These biological experiments demonstrate that the approach enables recovering al-

lele relationships. It is shown for instance that phylogenetic alleles having a common

origin are segregated according to the population of their bearer. The approach used

to compare minisatellite alleles is also valid for other types of markers. Recently,

another algorithm has been presented in [10] for the case of amplification and con-
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traction of order 1 and a maximal arity denoted by ρ. It works in O(max(m, n)3ρσ)

time and O(max(m, n)2ρσ) space.

In the remaining of this Section, we present the notion of minisatellite maps and

the hypothesized evolutionary model, we formally define the problem, and show

that the non-commutativity forces us to consider the order in which events occur

to find an optimal alignment. We then describe the solution of [7, 9] that combines

dynamic programming and computations of maximum independent sets in overlap

graphs. We present the dynamic programming scheme of [10] and conclude with

biological validations.

3.1. Minisatellites Maps and the Evolutionary Model

Along the tandem array of a minisatellite, the repeated unit varies in sequence. For

a fixed phase, the different adjacent substrings are called variants of the repeated

unit. In 1991, Jeffreys and colleagues designed a reaction to obtain the sequence of

variants of the array. This specific Polymerase Chain Reaction (PCR) is called the

Minisatellite Variant Repeat reaction or MVR-PCR for short [32]. It yields a

sequence in which each variant/substring is encoded by a symbol. Such sequences

are called minisatellite maps. Note that boundaries of the variants are fixed by

the technology. This technology enabled investigations of the processes responsi-

ble for minisatellites instability. Here, we deal with the problem of aligning two

minisatellite maps (which differs from aligning their DNA sequence). From the

computational view-point, maps are still sequences over a finite alphabet, which is

not the DNA alphabet. In the sequel, we use the terms string, sequence or map

without distinction.

The evolutionary model defines the set of events a map can undergo and asso-

ciate a real cost with each event. Here, we consider point-mutations, amplifications

and contractions of order 1 and arity 2 as defined in Section 1.3. Note that events

operate on variants instead of on DNA bases; e.g., a mutation changes a variant into

another, a deletion removes a complete variant from the map, etc. To each event

is associated a fixed real cost that we denote: A, C, D, I, M for resp. amplification,

contraction, deletion, insertion and mutation. We assume our model is symmetrical:

dual events have equal costs (A = C, D = I). To stick to biological conditions, we

assume A, C < M, D, I . Note that if I > A + M then an amplification followed by

a mutation is always preferred to an insertion. Without loss of generality, we make

this hypothesis on costs.

3.2. A Dynamic Programming Approach Combined With Graph

Algorithms

From now on, let r, s be two maps resp. of length n and m over the alphabet Σ.

Let − be an additional symbol that does not belong to Σ and denotes an inserted

or deleted position in an alignment. An edit script between r and s is a sequence

of events that transform r into s. An alignment of r and s is a representation of an
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enabled investigations of the processes responsible for minisatellites instability. Here, we deal with the
problem of aligning two minisatellite maps (which differs from aligning their DNA sequence). From
the computational view-point, maps are still sequences over a finite alphabet, which is not the DNA
alphabet. In the sequel, we use the terms string, sequence or map without distinction.

The evolutionary model defines the set of events a map can undergo and associate a real cost with
each event. Here, we consider point-mutations, amplifications and contractions of order 1 and arity 2 as
defined in Section 1.3. Note that events operate on variants instead of on DNA bases; e.g., a mutation
changes a variant into another, a deletion removes a complete variant from the map, etc. To each event
is associated a fixed real cost that we denote: A,C, D, I, M for resp. amplification, contraction, deletion,
insertion and mutation. We assume our model is symmetrical: dual events have equal costs (A = C,
D = I). To stick to biological conditions, we assume A,C < M, D, I. Note that if I > A + M then an
amplification followed by a mutation is always preferred to an insertion. Without loss of generality, we
make this hypothesis on costs.

Individual 1

Event Sequence

a a a a a
mutation a e a a a

Individual 2

Event Sequence

a a a a a
mutation a a a b a
5*amplification a a a b b b b b b a
mutation a a a b b c b b b a
mutation a a a b b c b d b a
amplification a a a b b c b d d b a

Fig. 8. Example of evolution of a minisatellite in two individuals.

s

\ ( \ ( \ \] ]

1 2 3 4 5 6 7 8 9 10 11

a e a a ar − − − − − −

a a a b b c b d d b a

Fig. 9. Alignment of the maps r := aeaaa and s := aaabbcbddba. The arch bbcbddb and its inner-arches are drawn
by curved lines under s. In the middle line, ‘|’, ‘]’, ‘\’, ‘(’ denote resp. a match, a mismatch, an amplification,
and an amplification+mutation.
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is the sum of its operation costs where aligning two identical variants costs zero. It is shown that the
alignment cost is a distance metric [BR03]. An example of evolution of different alleles from the same
ancestor allele is given in Figure 8 and an optimal alignment for the two resulting maps is shown in
Figure 9.
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edit script that respects the order of the positions in r and s. The alignment cost

is the sum of its operation costs where aligning two identical variants costs zero. It

is shown that the alignment cost is a distance metric [9]. An example of evolution

of different alleles from the same ancestor allele is given in Figure 8 and an optimal

alignment for the two resulting maps is shown in Figure 9.

Definition 5 (Allele Alignment). Given two maps r and s respectively of length

n, m over an alphabet Σ and a alignment scoring scheme, find the alignment be-

tween r and s that has minimum cost.

In Figure 8, the substring of s from position 4 to 10, bbcbddb, shows that the

final variant at each position does not appear in the order of the sequence: at some

stage, position 8 has still the ancestor state b and not its final state d, while position

10 is already a b. The minimal cost series of events to create such a substring is

order-dependent. If one computes incrementally alignment for longer and longer

prefixes, we cannot find the optimal order of events. This happens when aligning

a position in r with a substring of s having identical first and last characters.

Such a substring is called an arch. The first position of the arch in s is aligned to

the position in r, and all other arch’s characters are generated in s from the first
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position. The authors prove that at least in an optimal generation of the arch,

the last character is obtained by an amplification of the first when the positions are

adjacent, and then all other positions in between are generated afterwards. Thus,

one needs to consider the arch as whole, and not in order of increasing prefixes.

Such an arch generation avoids a mutation per arch. An arch may include other

inner-arches, but an alignment cannot include all possible arches. Because of the

optimal order of generation, two arches cannot belong to the same alignment if they

are incompatible with each other, i.e., if they overlap each other by more than one

variant (here overlap means that strict inclusions are allowed). It follows that an

optimal arch generation should contain the largest number of pairwise compatible

arches. The symmetrical situation, when the arch in r is aligned to a single symbol

in s, is called an arch compression.

Arches represent intervals of a map and incompatibility defines an overlap rela-

tionship between these intervals (not an overlap+containment relationship). Con-

sider the graph G whose nodes are arches and whose edges link two nodes if their

arches are incompatible. G is an overlap graph. It is shown in [9] that comput-

ing the maximum subset of compatible arches is equivalent to finding a maximum

independent set in G.

A preprocessing procedure will take as input a map t and compute for each pos-

sible interval the cost of the corresponding arch generation or compression (if any)

using an adaptation of Apostolico and coworkers’s algorithm [1]. This procedure is

applied to s and to r and results are stored in two matrices that require quadratic

space. Once this is done, one can get the generation cost, resp. the compression

cost, of any arch of s, resp. of r, in constant time.

The alignment problem is solved by filling a dynamic programming ma-

trix A whose entry A(i, j) is the optimal alignment cost between the pre-

fixes of s and r of length i and j resp. Five dependencies between A(i, j)

and its direct neighbors account for the five possible evolutionary events:

amplification, amplification+mutation (AM ), mutation/match, contraction, and

mutation+contraction (MC). (Note that there are no insertion, nor deletion be-

cause of our hypothesis on costs.) Moreover, up to i, resp. j, dependencies with

non adjacent entries on the same line, resp. on the same column, account for arch

generations, resp. arch compressions. These costs are denoted Gl′ and Kl. These

dependencies can be evaluated in O(1) time thanks to the preprocessing. The dy-

namic programming recurrence is illustrated in Figure 10. The algorithm requires

O(max(m, n)4) time and O(max(m, n)3) space.

Open questions:

— What is the complexity class of Pairwise Allele Alignment when higher

order amplifications and contractions are allowed? Find a practical solution.

— An algorithm for Multiple Allele Alignment under any of the assumptions

mentioned above.
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Fig. 10. Dependencies in the dynamic programming matrix. To compute cell A(i, j), we need at most all cells
in the striped patch but not the ones in the dark patch. Dependencies are shown by arrows. For arch generations
and compression the arrows are indexed by the beginning position of the arch to show that there are multiple
dependencies.

time and O(max(m, n)2ρσ) space where ρ denotes the maximal arity of amplifications and contractions.
Note that the vocabulary used in [BS03] may confuse the reader, since what we defined as the arity
is called “order” and the alignment distance is termed “Transformation Distance”. We stick to our
terminology.

In their approach, the authors consider the alignment of source map s with a destination map r as
a series of reductions of segments in s and of generations of segments from r. This is illustrated in
Figure 3.3. In s, diamonds represent generative symbols from which the corresponding segment of r is
generated (the segment at the opposite face of the triangle), while black circles are vanishing symbols.
All vanishing symbols between two consecutive diamonds are reduced into the leftmost diamond, the
associated segment in r is generated from the latter. The same process is repeated for each diamond
in order of appearance in s until r has been generated. The main dynamic programming reccurrence
optimizes the decomposition of s and r to minimize the alignment cost. Note that in this approach, the
first symbol of the map necessarily is a generative symbol.

The correctness of this process resorts on two lemmas. The “independence” lemma asserts that
any reduction may surely be performed before any generation. The “generation” lemma states that an
optimal generation is a non-decreasing, i.e., does not include deletions nor contractions. This implies
that the length of string being generated never decreases. Such a generation is made of amplfications,
insertions and mutations and, although it is not stated in [BS03], can be modeled by a regular grammar.
The authors associate a derivation tree to all non-decreasing generations that yield the same string and
have equal cost. Such equivalent generations differ by the order in which operations are applied and
this is because some operations commute.

In a preprocessing phase, the algorithm computes by dynamic programming the tables T [i, j, x] and
S[i, j] where the former gives the optimal generation cost of r[i, j] from symbol x and the latter the
minimum reduction cost of s[i, j] into s[i]. This computation of each table involves two other dynamic
programming matrices we do not detail here. Then, the computation of the alignment cost is done in
the table TD, where TD[i, j] equals the cost aligning s[1, i] with r[1, j], with the following recurrence:

Fig. 10. Dependencies in the dynamic programming matrix. To compute cell A(i, j), we need at
most all cells in the striped patch but not the ones in the dark patch. Dependencies are shown by
arrows. For arch generations and compression the arrows are indexed by the beginning position
of the arch to show that there are multiple dependencies.

3.3. A Second Dynamic Programming Scheme

Between the submission and acceptance of this survey, another work on Allele

Alignment has been published, showing that this field is active. In [10], the authors

consider Allele Alignment with amplifications and contractions of order 1 and

variable arity, which is a more general model than in [9] where arity is limited to

2. Moreover in their setup, the cost of events may differ according to the symbols

involved (E.g., an insertion of a variant a may cost more than that of a b). Despite

this generalization, their solution is based solely on dynamic programming and

requires O(max(m, n)3ρσ) time and O(max(m, n)2ρσ) space where ρ denotes the

maximal arity of amplifications and contractions. Note that the vocabulary used

in [10] may confuse the reader, since what we defined as the arity is called “order”

and the alignment distance is termed “Transformation Distance”. We stick to our

terminology.

In their approach, the authors consider the alignment of source map s with a

destination map r as a series of reductions of segments in s and of generations of

segments from r. This is illustrated in Figure 11. In s, diamonds represent genera-

tive symbols from which the corresponding segment of r is generated (the segment

at the opposite face of the triangle), while black circles are vanishing symbols. All

vanishing symbols between two consecutive diamonds are reduced into the leftmost

diamond, the associated segment in r is generated from the latter. The same process
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◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Fig. 11. Alignment of minisatellite maps as in [BS03]. A •, a � denote respectively a vanishing or a generating
symbol of s, and a ◦ represents a symbol of r.

Initialisation
TD[0, 0] = 0 et TD[0, j] = ∞ ∀j > 0,

Recurrence

∀i > 0 TD[i, j] = min

{

TD[i − 1, l] + R[l + 1, j, s[i]] ∀0 ≤ l < j
TD[k, j] + S[k, i] ∀0 < k < i

.

The description of the algorithm is incomplete and several details are lacking for reproducibility. In
their setup, the insertion event is not allowed at the first position of the sequence, but no explanation
justifies this restriction. To circumvent this, an extra $ symbol that does not belong to the alphabet is
added in front of the maps. The authors align $s with $r and consider that any event involving a $ has
infinite cost except the match. Hence, the dollar serves as a generative symbol. Let us look at an example
where Σ = {a, b} and we want to align s := $ba with r := $a with the costs A = C = 1, M = 10,
D = I = 20. With this algorithm, there are two generative symbols since the dollar is systematically
one of them and the best symbol to generate the a in r is the a in s. It comes out that the alignment
matches the dollars, deletes the b and then matches the a’s. This costs 20. With this scheme, there is
no way to mutate the b in a, contract an a, and then match the dollars and the a’s. The latter costs
10 + 1 = 11. The corresponding alignments are:

Alignment of [BS03]





$ b a
| |
$ − a





Optimal alignment





$ b a
| ] \
$ a −





This counter-example of S. Bérard shows the algorithm is not correct [Bér03a]. To fix it, one could
allow the initial block of symbols in s to be reduced into the next generative symbol. Another detail:
with the main reccurrence equation it is not possible to compute TD[1, 0].

In conclusion, the algorithm combines a dynamic programming scheme and the point of view of
formal languages, which may be appropriate when considering further extensions of the model, e.g.,
with variable order amplifications. Note that both the independence and generation lemmas are not
valid anymore in that case. Hence the open questions stated at the end of previous section remain. In
the model considered in [BS03], the cost of events vary with the variants involved; unfortunately, this
model has not been validated on real biological data.

3.4 Biological Validations

The algorithm of [BR03] described in Section 3.2 is implemented in a program named MS ALIGN
and has been applied to alleles of the human minisatellite MSY1 [JBT98]. MSY1 is a hypervariable
minisatellite locus on the human Y chromosome. Its repeat unit is 25 base pairs long and five different
variants, which differ from each other by at most 3 substitutions, have been observed. Amplifications and

Fig. 11. Alignment of minisatellite maps as in [10]. A •, a � denote respectively a vanishing or a
generating symbol of s, and a ◦ represents a symbol of r.

is repeated for each diamond in order of appearance in s until r has been generated.

The main dynamic programming reccurrence optimizes the decomposition of s and

r to minimize the alignment cost. Note that in this approach, the first symbol of

the map necessarily is a generative symbol.

The correctness of this process resorts on two lemmas. The “independence”

lemma asserts that any reduction may surely be performed before any generation.

The “generation” lemma states that an optimal generation is a non-decreasing, i.e.,

does not include deletions nor contractions. This implies that the length of string

being generated never decreases. Such a generation is made of amplfications, in-

sertions and mutations and, although it is not stated in [10], can be modeled by

a regular grammar. The authors associate a derivation tree to all non-decreasing

generations that yield the same string and have equal cost. Such equivalent gener-

ations differ by the order in which operations are applied and this is because some

operations commute.

In a preprocessing phase, the algorithm computes by dynamic programming

the tables T [i, j, x] and S[i, j] where the former gives the optimal generation cost of

r[i, j] from symbol x and the latter the minimum reduction cost of s[i, j] into s[i].

This computation of each table involves two other dynamic programming matrices

we do not detail here. Then, the computation of the alignment cost is done in

the table TD, where TD[i, j] equals the cost aligning s[1, i] with r[1, j], with the

following recurrence:

Initialisation

TD[0, 0] = 0 et TD[0, j] = ∞ ∀j > 0 ,

Recurrence

∀i > 0 TD[i, j] = min







TD[i− 1, l] + R[l + 1, j, s[i]] ∀0 ≤ l < j

TD[k, j] + S[k, i] ∀0 < k < i
.

The description of the algorithm is incomplete and several details are lacking for

reproducibility. In their setup, the insertion event is not allowed at the first position

of the sequence, but no explanation justifies this restriction. To circumvent this, an

extra $ symbol that does not belong to the alphabet is added in front of the maps.
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The authors align $s with $r and consider that any event involving a $ has infinite

cost except the match. Hence, the dollar serves as a generative symbol. Let us look

at an example where Σ = {a, b} and we want to align s := $ba with r := $a

with the costs A = C = 1, M = 10, D = I = 20. With this algorithm, there are

two generative symbols since the dollar is systematically one of them and the best

symbol to generate the a in r is the a in s. It comes out that the alignment matches

the dollars, deletes the b and then matches the a’s. This costs 20. With this scheme,

there is no way to mutate the b in a, contract an a, and then match the dollars and

the a’s. The latter costs 10 + 1 = 11. The corresponding alignments are:

Alignment of [10]





$ b a

| |

$ − a





Optimal alignment





$ b a

| ] \

$ a −





This counter-example of S. Brard shows the algorithm is not correct [8]. To fix

it, one could allow the initial block of symbols in s to be reduced into the next

generative symbol. Another detail: with the main reccurrence equation it is not

possible to compute TD[1, 0].

In conclusion, the algorithm combines a dynamic programming scheme and the

point of view of formal languages, which may be appropriate when considering

further extensions of the model, e.g., with variable order amplifications. Note that

both the independence and generation lemmas are not valid anymore in that case.

Hence the open questions stated at the end of previous section remain. In the model

considered in [10], the cost of events vary with the variants involved; unfortunately,

this model has not been validated on real biological data.

3.4. Biological Validations

The algorithm of [9] described in Section 3.2 is implemented in a program named

MS ALIGN and has been applied to alleles of the human minisatellite MSY1 [30].

MSY1 is a hypervariable minisatellite locus on the human Y chromosome. Its repeat

unit is 25 base pairs long and five different variants, which differ from each other

by at most 3 substitutions, have been observed. Amplifications and contractions of

order 1 and arity 2 were shown to be the most probable events experimentally [3].

This is in agreement with the model. The data set comprises 609 alleles from all

over the world, with the corresponding map, as well as the population of origin and

the Y-chromosomal genetic group (the technical term is haplogroup) if known.

All pairwise distances between alleles were computed. The experiments consisted

in reconstructing phylogenetic trees with a distance-based method for all or a sub-

set of the alleles using the corresponding distance matrix. The resulting trees are

confronted to other experimental data.

First, an evolutionary tree of the haplogroups was obtained from MSY1 with

average distances and found to resemble strongly the tree reconstructed from other
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contractions of order 1 and arity 2 were shown to be the most probable events experimentally [ALO02].
This is in agreement with the model. The data set comprises 609 alleles from all over the world, with
the corresponding map, as well as the population of origin and the Y-chromosomal genetic group (the
technical term is haplogroup) if known. All pairwise distances between alleles were computed. The
experiments consisted in reconstructing phylogenetic trees with a distance-based method for all or a
subset of the alleles using the corresponding distance matrix. The resulting trees are confronted to
other experimental data.

PSfrag replacements

JW85 [Tibetan] 4

JW89 [Tibetan] 4

m219 [Mongolian] 4

JW84 [Tibetan] 4

OK5 [Japanese] 4

MS71 [Japanese] 4

HR50 [Japanese] 4

MS110 [Japanese] 4

OK76 [Japanese] 4

OK65 [Japanese] 4

MS42 [Japanese] 4

MS119 [Japanese] 4

OK24 [Japanese] 4

MS54 [Japanese] 4

Fig. 12. Phylogenetic tree of haplogroup 4 built from a distance matrix produced by MS ALIGN. Each indi-
vidual is represented by its code, its population origin and its haplogroup.

First, an evolutionary tree of the haplogroups was obtained from MSY1 with average distances
and found to resemble strongly the tree reconstructed from other less polymorphic markers. However,
the MSY1 tree gives a higher resolution. Second, the authors looked at the trees of all alleles from
a given haplogroup. In many such trees, alleles are grouped by populations of origin when these are
geographically distant. This is consistent with the already observed geographical specificity of the Y
chromosome [JBT98]. An example of tree for the fourth haplogroup is given in Figure 12. In the tree of
this haplogroup, the Japanese alleles are perfectly separated from the Tibetan and Mongolian alleles.

4 Conclusion

Organisms have the possibility to locally duplicate, triplicate, etc. a segment of their genome, and also
to remove one or more copies among adjacent identical segments. This creates repeats with varying
numbers of copy units, called tandem repeats. As point mutations also alter the copy units, tandem
repeats display variation in copy sequence and in length. It follows that a tandem repeat has a history
and that any two individuals may have different tandem repeat sequences, alleles, at the same genomic
location. For many reasons, biologists are interested in tracing back the history of a tandem repeat and
to compare different alleles of a tandem repeat. In this paper, we surveyed these two problems, Tandem

Repeat History and Tandem Repeat Allele Alignment, which are related to the evolution of
tandem repeats. We gave an overview of algorithmic and combinatorial results on these topics, as well

Fig. 12. Phylogenetic tree of haplogroup 4 built from a distance matrix produced by MS ALIGN.
Each individual is represented by its code, its population origin and its haplogroup.

less polymorphic markers. However, the MSY1 tree gives a higher resolution. Sec-

ond, the authors looked at the trees of all alleles from a given haplogroup. In many

such trees, alleles are grouped by populations of origin when these are geographi-

cally distant. This is consistent with the already observed geographical specificity

of the Y chromosome [30]. An example of tree for the fourth haplogroup is given in

Figure 12. In the tree of this haplogroup, the Japanese alleles are perfectly separated

from the Tibetan and Mongolian alleles.

4. Conclusion

Organisms have the possibility to locally duplicate, triplicate, etc. a segment of their

genome, and also to remove one or more copies among adjacent identical segments.

This creates repeats with varying numbers of copy units, called tandem repeats. As

point mutations also alter the copy units, tandem repeats display variation in copy

sequence and in length. It follows that a tandem repeat has a history and that any

two individuals may have different tandem repeat sequences, alleles, at the same

genomic location. For many reasons, biologists are interested in tracing back the

history of a tandem repeat and to compare different alleles of a tandem repeat. In

this paper, we surveyed these two problems, Tandem Repeat History and Tan-

dem Repeat Allele Alignment, which are related to the evolution of tandem

repeats. We gave an overview of algorithmic and combinatorial results on these top-
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ics, as well as detailed biological motivations. We provided a unified framework for

their formalization. Among the algorithms mentioned in this survey, some have been

implemented and are available on the Internet at http://degas.lirmm.fr/REPSEQ:

DTScore and MS ALIGN.

Surely, the solutions for Tandem Repeat History would improve in biological

significance, if the algorithms could consider both amplifications and contractions.

In order to avoid considering infinite histories, a relevant constraint would be to

limit the number of contractions: not all copies created by an amplification can later

be removed by a contraction. The Tandem Repeat Allele Alignment prob-

lem is exactly solved when amplifications and contractions are limited to order 1.

Relaxing these constraints represents future lines of research. Combinatorial prop-

erties of tandem repeat histories also require more investigations and could lead to

algorithmic improvements. Although probabilistic approaches based on Maximum

Likelihood are recognized as the most reliable methods in phylogeny, they were ne-

glected until now for Tandem Repeat History. The design probabilistic methods

for this problem also seems a promising direction of research.
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