
Superstrings: graphs, greedy algorithms and
assembly

B. Cazaux and E. Rivals

∗ LIRMM & IBC, Montpellier

May 13, 2019

B. Cazaux & E. Rivals 1 / 56

Importance of a genome sequence

Sample analysis

Species identification
Infer evolutionary
relationships

B. Cazaux & E. Rivals 2 / 56

Importance of a genome sequence

Sample analysis

Species identification
Infer evolutionary
relationships

B. Cazaux & E. Rivals 2 / 56

Importance of a genome sequence

Sample analysis

Species identification

Infer evolutionary
relationships

B. Cazaux & E. Rivals 2 / 56

Importance of a genome sequence

Sample analysis

Species identification
Infer evolutionary
relationships

B. Cazaux & E. Rivals 2 / 56

Genome shotgun sequencing

Sequencer

A
T
A
C
G
A
T
G
G
A

T
G
G
A

A
T
A
C

T
A
C
G

C
G
A
T

A
T
G
G

Set of
reads

B. Cazaux & E. Rivals 3 / 56

Genome shotgun sequencing

Sequencer

A
T
A
C
G
A
T
G
G
A

T
G
G
A

A
T
A
C

T
A
C
G

C
G
A
T

A
T
G
G

Set of
reads

B. Cazaux & E. Rivals 3 / 56

Genome shotgun sequencing

Sequencer

A
T
A
C
G
A
T
G
G
A

T
G
G
A

A
T
A
C

T
A
C
G

C
G
A
T

A
T
G
G

Set of
reads

B. Cazaux & E. Rivals 3 / 56

Genome shotgun sequencing

Sequencer

A
T
A
C
G
A
T
G
G
A

T
G
G
A

A
T
A
C

T
A
C
G

C
G
A
T

A
T
G
G

Set of
reads

B. Cazaux & E. Rivals 3 / 56

Genome shotgun sequencing

Sequencer

A
T
A
C
G
A
T
G
G
A

T
G
G
A

A
T
A
C

T
A
C
G

C
G
A
T

A
T
G
G

Set of
reads

B. Cazaux & E. Rivals 3 / 56

Genome shotgun sequencing

Sequencer

A
T
A
C
G
A
T
G
G
A

T
G
G
A

A
T
A
C

T
A
C
G

C
G
A
T

A
T
G
G

Set of
reads

B. Cazaux & E. Rivals 3 / 56

Genome shotgun sequencing

Sequencer

A
T
A
C
G
A
T
G
G
A

T
G
G
A

A
T
A
C

T
A
C
G

C
G
A
T

A
T
G
G

Set of
reads

B. Cazaux & E. Rivals 3 / 56

Genome assembly and shortest superstring

Genome
Assembly

Stringology

Arthur Lesk

Ming Li

Shortest superstrings of the
sequenced fragments pre-
serve important biological
structures (1988)

Shortest superstrings are good
representations of the original
DNA molecule (1990)

B. Cazaux & E. Rivals 4 / 56

Genome assembly and shortest superstring

Genome
Assembly

Stringology

Arthur Lesk

Ming Li

Shortest superstrings of the
sequenced fragments pre-
serve important biological
structures (1988)

Shortest superstrings are good
representations of the original
DNA molecule (1990)

B. Cazaux & E. Rivals 4 / 56

Genome assembly and shortest superstring

Genome
Assembly

Stringology

Arthur Lesk

Ming Li

Shortest superstrings of the
sequenced fragments pre-
serve important biological
structures (1988)

Shortest superstrings are good
representations of the original
DNA molecule (1990)

B. Cazaux & E. Rivals 4 / 56

Genome assembly and shortest superstring

Genome
Assembly

Stringology

Arthur Lesk

Ming Li

Shortest superstrings of the
sequenced fragments pre-
serve important biological
structures (1988)

Shortest superstrings are good
representations of the original
DNA molecule (1990)

B. Cazaux & E. Rivals 4 / 56

Applications of superstrings

Multiple applications in diverse domains
I DNA assembly [Gingeras 1979, Peltola 1982]
I text compression [Storer 1988]
I job scheduling [Middendorf 1998]
I vaccine design [Martinez 2015]

Review mentioning other applications [Gevezes, Pitsoulis, 2011].

B. Cazaux & E. Rivals 5 / 56

Strings and superstrings: Basic definitions

B. Cazaux & E. Rivals 6 / 56

Vocable regarding strings or sequences

I Words = Strings = Sequence

I Sequence: ordered sequence of letters from alphabet

I We consider finite strings over an alphabet Σ

I and denote by |v | the length of a string v .

I Substring = sequence in any interval in a string

Example
cde is a substring of abcdeaeab but not of abcaedeae

B. Cazaux & E. Rivals 7 / 56

Linear and Cyclic words

a b b a b b

b
a

b

b

a

b

B. Cazaux & E. Rivals 8 / 56

Overlaps

Definition
Let w a string.

I a substring of w is a string included in w ,

I a prefix of w is a substring which begins w

I a suffix is a substring which ends w .

I an overlap from w over v is a suffix of w that is also a prefix of v .

w a b a b b a b a a a

v a b a a a b b b b

u a b a a a

ov(w ,v)

B. Cazaux & E. Rivals 9 / 56

Overlaps

Definition
Let w a string.

I a substring of w is a string included in w ,

I a prefix of w is a substring which begins w

I a suffix is a substring which ends w .

I an overlap from w over v is a suffix of w that is also a prefix of v .

w a b a b b a b a a a

v a b a a a b b b b

u a b a a a

ov(w ,v)

B. Cazaux & E. Rivals 9 / 56

Overlaps

Definition
Let w a string.

I a substring of w is a string included in w ,

I a prefix of w is a substring which begins w

I a suffix is a substring which ends w .

I an overlap from w over v is a suffix of w that is also a prefix of v .

w a b a b b a b a a a

v a b a a a b b b b

u a b a a a

ov(w ,v)

B. Cazaux & E. Rivals 9 / 56

Overlaps

Definition
Let w a string.

I a substring of w is a string included in w ,

I a prefix of w is a substring which begins w

I a suffix is a substring which ends w .

I an overlap from w over v is a suffix of w that is also a prefix of v .

w a b a b b a b a a a

v a b a a a b b b b

u a b a a a

ov(w ,v)

B. Cazaux & E. Rivals 9 / 56

Overlaps

Definition
Let w a string.

I a substring of w is a string included in w ,

I a prefix of w is a substring which begins w

I a suffix is a substring which ends w .

I an overlap from w over v is a suffix of w that is also a prefix of v .

w a b a b b a b a a a

v a b a a a b b b b

u a b a a a

ov(w ,v)

B. Cazaux & E. Rivals 9 / 56

Overlaps

Definition
Let w a string.

I a substring of w is a string included in w ,

I a prefix of w is a substring which begins w

I a suffix is a substring which ends w .

I an overlap from w over v is a suffix of w that is also a prefix of v .

w a b a b b a b a a a

v a b a a a b b b b

u a b a a a

ov(w ,v)

B. Cazaux & E. Rivals 9 / 56

Overlaps

Definition
Let w a string.

I a substring of w is a string included in w ,

I a prefix of w is a substring which begins w

I a suffix is a substring which ends w .

I an overlap from w over v is a suffix of w that is also a prefix of v .

w a b a b b a b a a a

v a b a a a b b b b

u a b a a a

ov(w ,v)

B. Cazaux & E. Rivals 9 / 56

Strings and maximum overlaps

Example (Maximum overlap between two strings)
Let strings s1 := babba and s2 := babaa.

ov(s1,s2) :

s2 :
s1 :

b a
b a b a a

b a b b a

s1 overlaps s2 by two characters

overlaps are not symmetric

B. Cazaux & E. Rivals 10 / 56

Input of superstring problems

Throughout this article, the input is P := {s1, . . . ,sn} a set of words.

Without loss of generality, P is assumed to be substring free:

no word of P is substring of another word of P.

Let us denote the norm of P by ‖P‖ := ∑
n
1 |si |.

B. Cazaux & E. Rivals 11 / 56

Superstring

Definition Superstring

Let P = {s1,s2, . . . ,sp} be a set of strings. A superstring of P is
a string w such that any si is a substring of w .

w :

s3 :

s2 :

s1 :

a c a a c a
1 2 3 4 5 6

a a c
a c

a c a

B. Cazaux & E. Rivals 12 / 56

Shortest Linear Superstring problem

Definition Shortest Linear Superstring problem (SLS)

Input: P a set of finite strings over an alphabet Σ
Output: w a linear superstring of P of minimal length.

B. Cazaux & E. Rivals 13 / 56

State of the art

Problem: Shortest Linear Superstrings problem (SLS)
I NP-hard [Gallant 1980]
I difficult to approximate [Blum et al. 1991]
I best known approximation ratio 2 + 11

30 [Paluch 2015]

B. Cazaux & E. Rivals 14 / 56

Measures of approximation

One can consider two measures of approximation for SLS and its
variants:
I the length of the output superstring w ,

which has to be minimised.
I the compression of P obtained with the superstring w , that is:

∑
i=1..p

|si |− |w |

which has to be maximised.

B. Cazaux & E. Rivals 15 / 56

Greedy algorithm

B. Cazaux & E. Rivals 16 / 56

Greedy algorithm for SLS

A simple heuristic algorithm

I that builds a superstring

I by merging a pair of words with the largest maximum overlap

I introduced by [Tarhio, Ukkonen 1988]

I whose compression ratio can be guaranted,

I whose superstring ratio can also be guaranted

I and has a known lower bound.

B. Cazaux & E. Rivals 17 / 56

greedy algorithm

Algorithm 1: greedy for Shortest Linear Superstring

Input: P a set of linear words.; Output: w a superstring of P;

while P is not empty do
u and v two elements of P having the longest overlap (u 6= v)
w is the merge of u and v
P := P \{u,v}
if P is empty (i.e. w is a superstring) then return w else
P := P ∪{w}

Theorem 1

Let P be a set of words. For any superstring w output by
greedy there exists σ a permutation of P such that w =
merge(P,σ).

B. Cazaux & E. Rivals 18 / 56

Example of greedy algorithm for SLS

a a b

a b b a

a b a a

a b a b b

|ov(abaab,ababba)|= |ab|= 2

B. Cazaux & E. Rivals 19 / 56

Example of greedy algorithm for SLS

a a b

a b b a

a b a a

a b a b b

|ov(ababb,abba)|= |abb|= 3

|ov(abaab,ababba)|= |ab|= 2

B. Cazaux & E. Rivals 19 / 56

Example of greedy algorithm for SLS

a a b

a b b a

a b a a

a b a b b

|ov(ababb,abba)|= |abb|= 3

a b a b b a

a b b a

a b a b b

|ov(abaab,ababba)|= |ab|= 2

B. Cazaux & E. Rivals 19 / 56

Example of greedy algorithm for SLS

a a b

a b a a

|ov(ababb,abba)|= |abb|= 3

a b a b b a
a b a b b a

|ov(abaab,ababba)|= |ab|= 2

B. Cazaux & E. Rivals 19 / 56

Example of greedy algorithm for SLS

a a b

a b a a

a b a b b a

|ov(abaa,aab)|= |aa|= 2

a b a a

a a b

a b a a b

|ov(abaab,ababba)|= |ab|= 2

B. Cazaux & E. Rivals 19 / 56

Example of greedy algorithm for SLS

a b a b b a

|ov(abaa,aab)|= |aa|= 2

a b a a b

a b a a b

|ov(abaab,ababba)|= |ab|= 2

B. Cazaux & E. Rivals 19 / 56

Example of greedy algorithm for SLS

a b a b b a

a b a a b

|ov(abaab,ababba)|= |ab|= 2

a b a a b

a b a b b a

a b a a b a b b a

B. Cazaux & E. Rivals 19 / 56

Example of greedy algorithm for SLS

|ov(abaab,ababba)|= |ab|= 2

a b a a b a b b a
a b a a b a b b a

B. Cazaux & E. Rivals 19 / 56

Known approximation upper and lower bounds

B
lu
m

et
al
.
19
91

T
en
g
et

al
.
19
93

C
zu
m
a
j
et

al
.
19
94

K
os
ar
a
ju

et
al
.
19
94

A
rm

en
et

al
.
19
94

A
rm

en
et

al
.
19
95

A
rm

en
et

al
.
19
96

B
re
sl
au
er

et
al
.
19
97

S
w
ee
d
yk

19
99

O
tt

19
99

K
ap
la
n
et

al
.
20
05

V
as
si
le
vs
ka

20
05

P
al
u
ch

et
al
.
20
12

K
ar
p
in
sk
i
et

al
.
20
12

M
u
ch
a
20
13

P
al
u
ch

20
14

greedy conjecture

1
1 + 1

17245

1 + 1
1071

1.003 = 1 + 1
332

2

2 + 1
2

3

2 + 11
30

B. Cazaux & E. Rivals 20 / 56

Overlap Graph

B. Cazaux & E. Rivals 21 / 56

Overlap Graph for a set of words

Consider the set
P :=
{abaa,abba,ababb,aab}

The Overlap Graph (OG) is applied in shortest superstring problems,
DNA assembly, and other applications [Gevezes, Pitsoulis, 2011]

B. Cazaux & E. Rivals 22 / 56

SLS and Max Weighted Hamiltonian path

Theorem 2

Solving SLS of an instance P is equivalent to finding a Max
Weighted Hamiltonian path on the Overlap Graph of P.

Idea:

I All words are contained,

I pairs of words are merged using their ov(., .)

I the MWHP ensures the compression is maximised.

B. Cazaux & E. Rivals 23 / 56

Ex. Max Weighted Hamiltonian path

Let P := {abaa,abba,ababb,aab}.
Optimal solution: w = abaab abb a = abaababba

B. Cazaux & E. Rivals 24 / 56

Overlap graph

I Quadratic number of arcs / weights to compute

I Computing the weights requires to solve
the so-called All Pairs Suffix Prefix overlaps problem (APSP)

I Optimal time algorithms for APSP by
[Gusfield et al 1992] and others [Lim, Park 2017] or [Tustumi et al.
2016].

I Useful information are difficult to get in the OG

We propose an alternative to the OG,
called the Hierarchical Overlap Graph

and an algorithm to build it.

B. Cazaux & E. Rivals 25 / 56

SLS and its variants

B. Cazaux & E. Rivals 26 / 56

Shortest Cyclic Superstrings problem

Problem: Shortest Cyclic Superstrings problem (SCS)

Input: A set of linear words P
Output: w a cyclic superstring of P of minimal length.

B. Cazaux & E. Rivals 27 / 56

Shortest Cyclic Cover of Strings problem

Problem: Shortest Cyclic Cover of Strings problem (SCCS)

Input: A set of linear words P
Output: A set of minimum cyclic words C, such that ∀s ∈ P, ∃c ∈ C,
such that s is a substring of c (minimum for the sum of the length of the
words of C).

B. Cazaux & E. Rivals 28 / 56

State of the art

Problem: Shortest Linear Superstring (SLS)
I NP-hard [Gallant 1980]
I difficult to approximate [Blum et al. 1991]
I best known approximation ratio 2 + 11

30 [Paluch 2015]

Problem: Shortest Cyclic Superstring (SCS)
I NP-hard [Cazaux, thesis 2016]
I difficult to approximate ????
I best known approximation ratio ????

Problem: Shortest Cyclic Cover of String (SCCS)
I Polynomial time for SCC in graph [Papadimitriou & Stieglitz]
I Linear [Cazaux & R., JDA, 2016]

B. Cazaux & E. Rivals 29 / 56

Length of optimal solutions of SLS, SCS, SCCS

Theorem 3

Let P be an instance of SLS, SCS, SCCS.
We have

|opt(SLS)| ≥ |opt(SCS)| ≥ |opt(SCCS)| .

B. Cazaux & E. Rivals 30 / 56

Greedy algorithm for SCCS

Algorithm 2: greedy for Shortest Cyclic Cover of Strings

Input: P a set of linear words.;

Output: S a set of cyclic strings that cover P;

S := /0

while P is not empty do
u and v two elements of P having the longest overlap (u can be
equal to v)
w is the merge of u and v
P := P \{u,v}
if u = v (i.e. w is a cyclic string) then S := S∪{w} else
P := P ∪{w}

return S

B. Cazaux & E. Rivals 31 / 56

Merging words from a permutation

P = {ababb,aab,abba,abaa}
(

1 2 3 4
3 1 2 4

)
= σ1+

CC(P,σ1) = ab abb a aba

ababb aab

abbaabaa

0

3
0

0
2

2
2

0

1
1

1

1

2
1

1
1

3
1

2

1

B. Cazaux & E. Rivals 32 / 56

Merging words from a permutation

P = {ababb,aab,abba,abaa}
(

1 2 3 4
3 1 2 4

)
= σ1+

CC(P,σ1) = ab abb a aba

ababb aab

abbaabaa

0

3
0

0
2

2
2

0

1
1

1

1

2
1

1
1

3
1

2

1

B. Cazaux & E. Rivals 32 / 56

Inclusions of sets of solutions

CCS

PCCS

OPT

I CCS : Set of Cyclic Cover of Strings.

I PCCS : Set of solutions of Cyclic Cover of Strings obtained
through a permutation.

I OPT : Set of optimal solution of SCCS.

B. Cazaux & E. Rivals 33 / 56

Hierarchical Overlap Graph (HOG)

B. Cazaux & E. Rivals 34 / 56

Hierarchical Overlap Graph

ababb aab

abba abaa

abb

aa

ab

a

ε

all input words

and their maximal overlaps
red arcs: link a string to its longest suffix
blue arcs: link a longest prefix to its string

A red & blue “path” represents the merge of any two words

B. Cazaux & E. Rivals 35 / 56

Hierarchical Overlap Graph

ababb aab

abba abaa

abb

aa

ab

a

ε

all input words and their maximal overlaps

red arcs: link a string to its longest suffix
blue arcs: link a longest prefix to its string

A red & blue “path” represents the merge of any two words

B. Cazaux & E. Rivals 35 / 56

Hierarchical Overlap Graph

ababb aab

abba abaa

abb

aa

ab

a

ε

all input words and their maximal overlaps
red arcs: link a string to its longest suffix

blue arcs: link a longest prefix to its string
A red & blue “path” represents the merge of any two words

B. Cazaux & E. Rivals 35 / 56

Hierarchical Overlap Graph

ababb aab

abba abaa

abb

aa

ab

a

ε

all input words and their maximal overlaps

red arcs: link a string to its longest suffix

blue arcs: link a longest prefix to its string

A red & blue “path” represents the merge of any two words

B. Cazaux & E. Rivals 35 / 56

Hierarchical Overlap Graph

ababb aab

abba abaa

abb

aa

ab

a

ε

all input words and their maximal overlaps

red arcs: link a string to its longest suffix
blue arcs: link a longest prefix to its string

A red & blue “path” represents the merge of any two words

B. Cazaux & E. Rivals 35 / 56

Aho-Corasick and greedy algorithm for SLS

B. Cazaux & E. Rivals 36 / 56

Aho Corasick automaton

I Part of the 1st solution to Set Pattern Matching [Aho Corasick 1975]

I Search all occurrences of a set P of words in a text T

1. store the words in a tree whose arcs are labeled with an alphabet
symbol

2. compute the Failure Links
3. scan T using the automaton

I Takes O(‖P‖) time for building the automaton and O(|T |) time for
scanning T .

I Generalisation of Morris-Pratt algorithm for single pattern search

B. Cazaux & E. Rivals 37 / 56

Greedy algorithm for SLS [Ukkonen 1990]

Linear time implementation of greedy algorithm for SLS by Ukkonen.
I Simulate greedy algorithm on Aho Corasick automaton of P

I Characterizes states / nodes that are overlaps of pairs of words

P := {ELE,LEA,AKI,KIKI,KIRA}

B. Cazaux & E. Rivals 38 / 56

Greedy algorithm for SLS [Ukkonen 1990]

Linear time implementation of greedy algorithm for SLS by Ukkonen.
I Simulate greedy algorithm on Aho Corasick automaton of P

I Characterizes states / nodes that are overlaps of pairs of words

B. Cazaux & E. Rivals 38 / 56

Definitions of EHOG and HOG

B. Cazaux & E. Rivals 39 / 56

Extended HOG and HOG

Definition Hierarchical Overlap Graph (HOG)

The HOG of P, denoted by HOG(P), is the digraph (VH ,PH ,SH)
where V := P ∪Ov(P) and PH is the set:
{(x ,y) ∈ (P ∪Ov(P))2 | y is the longest proper suffix of x}
SH is the set:
{(x ,y) ∈ (P ∪Ov(P))2 | x is the longest proper prefix of y}

Definition Extended Hierarchical Overlap Graph (EHOG)

The EHOG of P, denoted by EHOG(P), is the directed graph
(VE ,PE ,SE) where VE = P ∪Ov+(P) and PE is the set:
{(x ,y) ∈ (P ∪ Ov+(P))2 | y is the longest proper suffix of x}
SE is the set:
{(x ,y) ∈ (P ∪Ov+(P))2 | x is the longest proper prefix of y}

B. Cazaux & E. Rivals 40 / 56

Extended HOG and HOG

Definition Hierarchical Overlap Graph (HOG)

The HOG of P, denoted by HOG(P), is the digraph (VH ,PH ,SH)
where V := P ∪Ov(P) and PH is the set:
{(x ,y) ∈ (P ∪Ov(P))2 | y is the longest proper suffix of x}
SH is the set:
{(x ,y) ∈ (P ∪Ov(P))2 | x is the longest proper prefix of y}

Definition Extended Hierarchical Overlap Graph (EHOG)

The EHOG of P, denoted by EHOG(P), is the directed graph
(VE ,PE ,SE) where VE = P ∪Ov+(P) and PE is the set:
{(x ,y) ∈ (P ∪ Ov+(P))2 | y is the longest proper suffix of x}
SE is the set:
{(x ,y) ∈ (P ∪Ov+(P))2 | x is the longest proper prefix of y}

B. Cazaux & E. Rivals 40 / 56

Visual example of construction steps

Aho Corasik tree of P

takes O(‖P‖) time

Extended HOG of P

O(‖P‖) time

HOG of P

time?

Here P := {aabaa,aacd ,cdb}.
B. Cazaux & E. Rivals 41 / 56

Visual example of construction steps

Aho Corasik tree of P
takes O(‖P‖) time

Extended HOG of P
O(‖P‖) time

HOG of P
time?

Here P := {aabaa,aacd ,cdb}.
B. Cazaux & E. Rivals 41 / 56

Construction algorithm

B. Cazaux & E. Rivals 42 / 56

HOG construction: algorithm overview

Algorithm 3: HOG construction

Input: P a substring free set of words; Output: HOG(P)

Variable: bHog a bit vector of size #(EHOG(P))
build EHOG(P)

set all values of bHog to False

traverse EHOG(P) to build Rl(u) for each internal node u

run MarkHOG(r) where r is the root of EHOG(P)

Contract(EHOG(P),bHog)

// Procedure Contract traverses EHOG(P) to discard
nodes that are not marked in bHog and contract the
appropriate arcs

B. Cazaux & E. Rivals 43 / 56

List Rl(u) for a node u of the EHOG

For any internal node u, Rl(u) lists the words of P that admit u as a
suffix.
Formally:

Rl(u) := {i ∈ {1, . . . ,#(P)} : u is suffix of si}.

I A traversal of EHOG(P) allows to build a list Rl(u) for each
internal node u see [Ukkonen, 1990].

I The cumulated sizes of all Rl is linear in ‖P‖

indeed, internal nodes represent different prefixes of words of P and
have thus different begin/end positions in those words.

B. Cazaux & E. Rivals 44 / 56

Example list Rl(.)

EHOG for instance
P :=
{tattatt,ctattat,gtattat,cctat}.

4

tatcc

2

tat

ta
tc

3

gtattat

1

t
at

t
at

t

{4}

{2,3}

{1}

{2, 3,4}

{1, 2,3, 4}

{1,2, 3, 4}

B. Cazaux & E. Rivals 45 / 56

MarkHOG(u) algorithm

Input:u a node of EHOG(P); Output:C: a boolean array of size #(P);

if u is a leaf then
set all values of C to False;

bHog[u] := True;

return C;

// Cumulate the information for all children of u

C := MarkHOG(v) where v is the first child of u;

foreach v among the other children of u do
C := C∧MarkHOG(v);

// Process overlaps arising at node u: Traverse Rl (u)

for node x in the list Rl (u) do
if C[x] = False then

bHog[u] := True

C[x] := True;

return C

B. Cazaux & E. Rivals 46 / 56

Two invariants

Invariant #1 (after line 7):
C[w] is True iff for any leaf l in the subtree of u the pair ov(w , l)> |u|.

Invariant #2 (after line 11):
C[w] is True iff for any leaf l in the subtree of u the pair ov(w , l)≥|u|.

B. Cazaux & E. Rivals 47 / 56

Example for MarkHOG(root)

EHOG for P := {tattatt,ctattat,gtattat,cctat}.

4

tatcc

2

tat

ta
tc

3

gtattat

1

t
at

t
at

t

{4}

{2,3}

{1}

{2, 3,4}

{1, 2,3, 4}

{1,2, 3, 4} Trace of MarkHOG(root).

node R` C(before) C(after) Spec pairs bHog
ctat {4} 0000 0001 (4,2) 1
tattat {2,3} 0000 0110 (2,1) (3,1) 1
tatt {1} 0110 1110 (1,1) 1
tat {2,3,4} 1110 1111 (4,1) 1
t {1,2,3,4} 1111 1111 empty 0
root {1,2,3,4} 0000 ˆ 0001 0000
root {1,2,3,4} 0000 ˆ 0000 0000 (2/3,2)
root {1,2,3,4} 0000 ˆ 1111 0000 (1/2/3/4,4)
root {1,2,3,4} 0000 1111 (2/3/4,3) 1

B. Cazaux & E. Rivals 48 / 56

Another example

P := {abcba,baba,abab,bcbcb}

EHOG & HOG Trace of MarkHOG(root).

node R` C(before) C(after) Specific pairs bHog
bcb {1} 0000 1000 (1,1) 1
bab {4} 0000 0001 (4,2) 1
ba {2,3} 0001 0111 (2,2) (3,2) 1
b {1, 4} 1000 ˆ 0111
b {1, 4} 0000 1001 (4,1) (1,2) 1
aba {2} 0000 0100 (2,4) 1
ab {4} 0000 ˆ 0100
ab {4} 0000 0001 (4,3) (4,4) 1
a {2,3} 0001 0111 (2,3) (3,3) (3,4) 1
root {1,2,3,4} 1001 ˆ 0111
root {1,2,3,4} 0001 1111 (1,3) (1,4) (2,1) (3,1) 1

B. Cazaux & E. Rivals 49 / 56

Complexity

Theorem 4

Let P be a set of words.

Then Algorithm 3 computes HOG(P) using

O(‖P‖+ #(P)2) time and

O(‖P‖+ #(P)×min(#(P),max{|s| : s ∈ P}) space.

If all words of P have the same length, then the space complexity
is O(‖P‖).

Can one improve on this?

B. Cazaux & E. Rivals 50 / 56

Conclusion

B. Cazaux & E. Rivals 51 / 56

Conclusions and pointers

I The Hierarchical Overlap Graph (HOG) is a compact alternative
to the Overlap Graph (OG).

I For constructing the HOG, Algorithm 1 takes O(‖P‖) space and
O(‖P‖+ #(P)2) time.

Can one compute the HOG in a time linear in ‖P‖+ #(P)?

I HOG useful for variants of SLS: for a cyclic cover, with
Multiplicities, etc.

Superstrings with multiplicities
Annual Symp. on Combinatorial Pattern Matching, CPM 2018

LIPIcs, vol. 105, n. 21, doi: 10.4230/LIPIcs.CPM.2018.21, 2018

More on Hierarchical Overlap Graph. arXiv:1802.04632 2018

B. Cazaux & E. Rivals 52 / 56

http://dx.doi.org/10.4230/LIPIcs.CPM.2018.21
https://arxiv.org/abs/1802.04632

In practice

I EHOG as an overlap index

arXiv:1707.05613v1

I A greedy like approximation algorithm for SLS using the EHOG

Practical lower and upper bounds for the Shortest Linear
Superstring

B. Cazaux, S. Juhel, E. Rivals
International Symposium on Experimental Algorithms (SEA 2018)

LIPIcs, vol. 103, n. 18, doi: 10.4230/LIPIcs.SEA.2018.18, 2018

B. Cazaux & E. Rivals 53 / 56

https://arxiv.org/abs/1707.05613v1
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.18

Relation to data structures and to assembly algorithms

I Algorithms to compute and update de Bruijn graphs from a suffix
tree or a suffix array
[Cazaux et al, J. of Computer and System Sciences, 2016]
doi:10.1016/j.jcss.2016.06.008

I How does assembly on a HOG compare to multi-DBG assemblers like
SPAdes?
[Cazaux et al, in Algorithmic Aspects in Information and Management,
LNCS vol. 9778, 39–52, 2016]
Authors version link

B. Cazaux & E. Rivals 54 / 56

http://dx.doi.org/10.1016/j.jcss.2016.06.008
https://www.mv.helsinki.fi/home/cazaux/article/aaim-RR.pdf

Open questions

I How different are EHOG and HOG in practice?

There exist instances such that in the limit
the ratio between their number of nodes can goes to ∞

when ‖P‖ tends to ∞ with a bounded number of words.
http://www.lirmm.fr/˜rivals/res/superstring/hog-art-appendix.pdf

I Reverse engineering of HOG

Recognition of OG by [Gevezes & Pitsoulis 2014]

B. Cazaux & E. Rivals 55 / 56

http://www.lirmm.fr/~rivals/res/superstring/hog-art-appendix.pdf

Funding and acknowledgements

Work on compact EHOG implementation with R. Canovas

Thank you for your attention!

Questions?

B. Cazaux & E. Rivals 56 / 56

	Introduction
	Strings and superstrings: Basic definitions
	Strings and overlaps

	Greedy algorithm
	Overlap Graph
	SLS and its variants
	Hierarchical Overlap Graph (HOG)
	Aho-Corasick and greedy algorithm for SLS
	Definitions of EHOG and HOG
	Construction algorithm
	Conclusion

