
«Calcul formel avancé et applications». Brief lecture notes.

19.09.2024. Lecture 2.

1. Discussion fo the homework. We proved that for two jointly distributed random variables (X,Y ) we
have

H(X,Y ) ≤ H(X) +H(Y )

(with equality for independent X and Y ). The proof uses concavity of logarithm and Jensen’s inequality.
Applying this inequality twice, we conclude that for a triple of jointly distributed random variables (X,Y, Z)
we have

H(X,Y, Z) ≤ H(X) +H(Y ) +H(Z).

We used these properties of Shannon’s entropy to solve an exercise from the homework:
Homework 1.3. We are given n = 14 coins, and again one fake coin can be heavier or lighter than the
genuine ones. How many weighings does it take to find a genuine coin? Prove that there is no strategy can
do it in three operations.

2. Prefix-free codes and Huffman’s code. We say that a binary code C is a set of binary words (binary
strings), i.e., C ⊂ {0, 1}∗. Elements of C are called codewords. A binary code C is called prefix-free if for
every two codewords v, w ∈ C, the words v is not a prefix of w. A prefix-free binary code can represented
as a rooted binary tree, whose branches (paths from the root to the leaves) correspond to the codewords.
In the class we discussed that a prefix-free binary code with n codewords is an equivalent description of a
strategy for the game “guess a number between 1 and n” with yes-or-no answers.

Prefix free codes have the useful property of unique decoding: if a binary string x was obtained as a
concatenation of several words from a prefix-free code C,

X = ci1ci2 . . . ci` ,

then this representation (i.e., the sequence of codewords ci1 , ci2 , . . . , ci`) can be reconstructed uniquely.
For a distribution of probabilities on n messages (p1, . . . , pn) and a prefix-free binary code (c1, . . . , cn)

associated with this distribution, the average length ofthe codewords is

(∗)
n∑

i=1

pi|ci|,

where |ci| denotes the length (number of binary digits) in ci. For a fixed distribution of probabilities, we
may ask how to find a prefix-free code that minimises the average length of the codewords. We will call the
minimal average length of the codewords associated with a given distribution of probabilities by the cost of
this distribution.

In the class we discussed the construction of Huffman, which allows to find for a given distribution of
probabilities (p1, . . . , pn) the prefix-free code that provides the minimum of (*) and, respectively, to compute
the cost of this distribution. The correctness of Huffman’s construction is based on the following lemmas.

Lemma 1. For every distribution of probabilities (p1, . . . , pn) such that p1 ≥ p2 ≥ . . . ≥ pn, in every
prefix-free binary code (c1, . . . , cn) that provides the minimum of (*), we have

|c1| ≤ |c2| ≤ . . . ≤ |cn|.

In other words, in an optimal code, the smaller probabilities are associated with the longer codeword.

Lemma 2. For every distribution of probabilities (p1, . . . , pn) such that p1 ≥ p2 ≥ . . . ≥ pn, in every prefix-
free binary code (c1, . . . , cn) that provides the minimum of (*), we have |cn−1| = |cn|. In other words, an
optimal code cannot have a unique longest codeword.



Lemma 3. For every distribution of probabilities (p1, . . . , pn) such that p1 ≥ p2 ≥ . . . ≥ pn, in every prefix-
free binary code (c1, . . . , cn) that provides the minimum of (*), there exists i < n such that the codewords ci
and cn are of the same length and, moreover, the words ci and cn differ in only the very last bit.

Lemma 4. Let
P1 = (p1, p2, . . . , pn−1, pn, pn+1)

be a probability distribution where p1 ≥ p2 ≥ . . . ≥ pn−1 ≥ pn ≥ pn+1, and

P2 = (p1, p2, . . . , pn−1, q)

be another probability distribution where q = pn + pn+1. The the difference between the costs of these
distributions is equal to q.

Recursive construction of Huffman’s code
input: probability distribution (p1, . . . , pn)

• if n = 2 then return the code (0, 1)

• otherwise, sort the list of probabilities in descending order

/* so in what follows we may assume that p1 ≥ p1 ≥ . . . ≥ pn */

• let q := pn−1 + pn

• (d1, . . . , dn−1)← result of the recursive call of the algorithm on the distribution (p1, . . . , pn−2, q))

• return the result (c1, . . . , cn) where

ci := di for i = 1 . . . (n− 2),

cn−1 = dn−10 (dn−1 concatenated with zero ),

cn = dn−11 (dn−1 concatenated with one )

In the class we proved that Huffman’s algorithm returns for every distribution an optimal prefix-free
code, i.e., a code that provides the minimal possible value for the average length of the codeword (*),

Theorem 1. For every distribution (p1, . . . , pn) Huffman’s code (the coded constructed by the algoruthm
explained above) provides the minimum to the average length of the codeword (*).

The proof of this theorem is based on Lemma 1-4.

Exercise 1. Find Huffman’s codes for the following probability distributions:
(a) (0.25, 0.35, 0.4)
(b) (0.32, 0.3, 0.23, 0.12, 0.03)
(c) ( 12 ,

1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
32 )

Exercise 2. Show that for some distributions (p1, . . . , pn) the expression

n∑
i=1

pi

⌈
log

1

pi

⌉
is strictly greater than the optimal average number of questions in a strategy of guessing a number with
yes-or-no questions.
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Exercise 3. We have n stones and the scale that can compare the weights of any pair of stones. How many
operations de we need to sort all the stones in in descending order ?

(a) n = 3,
(b) n = 4,
(c) n = 5.

For each of these n, suggest a sorting strategy and prove its optimality.

3. Uniquely decodable codes and Kraft’s inequality. We say that binary code C = {c1, . . . , cn} is
uniquely decodable if for every x ∈ {0, 1}∗ there exists at most one way to represent x as a concatenation of
codewords from C,

x = ci1ci2 . . . ci` .

We have seen prefix-free codes are uniquely decodable. Some uniquely decodable code are not prefix-free.
However, for every uniquely decodable code there exists a prefix-free code with the same lengths of codewords
(so the minimum of the average length of the codewords can be always achieved in the class of prefix-free
codes):

Theorem 2. For every uniquely decodable binary code (c1, . . . , cn) there exists a prefix-free binary code
(d1 . . . , dn) such that |di| = |ci| for all i = 1, . . . , n.

This theorem follows from two lemmas.

Lemma 5 (Kraft’s inequality). For every uniquely decodable binary code (c1, . . . , cn)

n∑
i=1

2−|ci| ≤ 1.

(We proved this lemma in the class.)

Lemma 6. For every set of natural numbers `1, . . . `n such that

n∑
i=1

2−`i ≤ 1

there exists a prefix-free binary code (d1 . . . , dn) such that |di| = `i for all i = 1, . . . , n.

(We proved this lemma in the class a week ago in terms of “strategies” for games with yes-and-no questions.)
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