«Calcul formel avancé et applications». Brief lecture notes.

19.09.2024. Lecture 2.

1. Discussion to the homework. We proved that for two jointly distributed random variables (X, Y) we have

$$H(X,Y) \le H(X) + H(Y)$$

(with equality for independent X and Y). The proof uses concavity of logarithm and Jensen's inequality. Applying this inequality twice, we conclude that for a triple of jointly distributed random variables (X, Y, Z) we have

$$H(X, Y, Z) \le H(X) + H(Y) + H(Z).$$

We used these properties of Shannon's entropy to solve an exercise from the homework:

Homework 1.3. We are given n = 14 coins, and again one fake coin can be heavier or lighter than the genuine ones. How many weighings does it take to find a genuine coin? Prove that there is no strategy can do it in *three* operations.

2. Prefix-free codes and Huffman's code. We say that a binary *code* C is a set of binary words (binary strings), i.e., $C \subset \{0,1\}^*$. Elements of C are called codewords. A binary code C is called *prefix-free* if for every two codewords $v, w \in C$, the words v is not a prefix of w. A prefix-free binary code can represented as a rooted binary tree, whose branches (paths from the root to the leaves) correspond to the codewords. In the class we discussed that a prefix-free binary code with n codewords is an equivalent description of a *strategy* for the game "guess a number between 1 and n" with yes-or-no answers.

Prefix free codes have the useful property of unique decoding: if a binary string x was obtained as a concatenation of several words from a prefix-free code C,

$$X = c_{i_1} c_{i_2} \dots c_{i_\ell},$$

then this representation (i.e., the sequence of codewords $c_{i_1}, c_{i_2}, \ldots, c_{i_\ell}$) can be reconstructed uniquely.

For a distribution of probabilities on n messages (p_1, \ldots, p_n) and a prefix-free binary code (c_1, \ldots, c_n) associated with this distribution, the *average length of the codewords* is

$$(*) \qquad \qquad \sum_{i=1}^{n} p_i |c_i|$$

where $|c_i|$ denotes the length (number of binary digits) in c_i . For a fixed distribution of probabilities, we may ask how to find a prefix-free code that minimises the average length of the codewords. We will call the minimal average length of the codewords associated with a given distribution of probabilities by the *cost* of this distribution.

In the class we discussed the construction of Huffman, which allows to find for a given distribution of probabilities (p_1, \ldots, p_n) the prefix-free code that provides the minimum of (*) and, respectively, to compute the *cost* of this distribution. The correctness of Huffman's construction is based on the following lemmas.

Lemma 1. For every distribution of probabilities (p_1, \ldots, p_n) such that $p_1 \ge p_2 \ge \ldots \ge p_n$, in every prefix-free binary code (c_1, \ldots, c_n) that provides the minimum of (*), we have

$$|c_1| \le |c_2| \le \ldots \le |c_n|.$$

In other words, in an optimal code, the smaller probabilities are associated with the longer codeword.

Lemma 2. For every distribution of probabilities (p_1, \ldots, p_n) such that $p_1 \ge p_2 \ge \ldots \ge p_n$, in every prefixfree binary code (c_1, \ldots, c_n) that provides the minimum of (*), we have $|c_{n-1}| = |c_n|$. In other words, an optimal code cannot have a unique longest codeword. **Lemma 3.** For every distribution of probabilities (p_1, \ldots, p_n) such that $p_1 \ge p_2 \ge \ldots \ge p_n$, in every prefixfree binary code (c_1, \ldots, c_n) that provides the minimum of (*), there exists i < n such that the codewords c_i and c_n are of the same length and, moreover, the words c_i and c_n differ in only the very last bit.

Lemma 4. Let

$$\mathcal{P}_1 = (p_1, p_2, \dots, p_{n-1}, p_n, p_{n+1})$$

be a probability distribution where $p_1 \ge p_2 \ge \ldots \ge p_{n-1} \ge p_n \ge p_{n+1}$, and

 $\mathcal{P}_2 = (p_1, p_2, \dots, p_{n-1}, q)$

be another probability distribution where $q = p_n + p_{n+1}$. The the difference between the costs of these distributions is equal to q.

Recursive construction of Huffman's code

input: probability distribution (p_1, \ldots, p_n)

- if n=2 then return the code (0,1)
- otherwise, sort the list of probabilities in descending order
 - /* so in what follows we may assume that $p_1 \ge p_1 \ge \ldots \ge p_n */$
- let $q := p_{n-1} + p_n$
- $(d_1, \ldots, d_{n-1}) \leftarrow$ result of the recursive call of the algorithm on the distribution $(p_1, \ldots, p_{n-2}, q)$)
- return the result (c_1, \ldots, c_n) where $c_i := d_i$ for $i = 1 \ldots (n-2)$, $c_{n-1} = d_{n-1}0$ (d_{n-1} concatenated with zero), $c_n = d_{n-1}1$ (d_{n-1} concatenated with one)

In the class we proved that Huffman's algorithm returns for every distribution an optimal prefix-free code, i.e., a code that provides the minimal possible value for the average length of the codeword (*),

Theorem 1. For every distribution (p_1, \ldots, p_n) Huffman's code (the coded constructed by the algorithm explained above) provides the minimum to the average length of the codeword (*).

The proof of this theorem is based on Lemma 1-4.

Exercise 1. Find Huffman's codes for the following probability distributions:

- (a) (0.25, 0.35, 0.4)
- (b) (0.32, 0.3, 0.23, 0.12, 0.03)
- (c) $\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{32}\right)$

Exercise 2. Show that for some distributions (p_1, \ldots, p_n) the expression

$$\sum_{i=1}^{n} p_i \left\lceil \log \frac{1}{p_i} \right\rceil$$

is strictly greater than the optimal average number of questions in a strategy of guessing a number with yes-or-no questions.

Exercise 3. We have *n* stones and the scale that can compare the weights of any pair of stones. How many operations de we need to sort all the stones in in descending order ?

(a) n = 3, (b) n = 4, (c) n = 5.

For each of these n, suggest a sorting strategy and prove its optimality.

3. Uniquely decodable codes and Kraft's inequality. We say that binary code $C = \{c_1, \ldots, c_n\}$ is uniquely decodable if for every $x \in \{0, 1\}^*$ there exists at most one way to represent x as a concatenation of codewords from C,

$$x = c_{i_1} c_{i_2} \dots c_{i_\ell}.$$

We have seen prefix-free codes are uniquely decodable. Some uniquely decodable code are *not* prefix-free. However, for every uniquely decodable code there exists a prefix-free code with the same lengths of codewords (so the minimum of the average length of the codewords can be always achieved in the class of prefix-free codes):

Theorem 2. For every uniquely decodable binary code (c_1, \ldots, c_n) there exists a prefix-free binary code (d_1, \ldots, d_n) such that $|d_i| = |c_i|$ for all $i = 1, \ldots, n$.

This theorem follows from two lemmas.

Lemma 5 (Kraft's inequality). For every uniquely decodable binary code (c_1, \ldots, c_n)

$$\sum_{i=1}^{n} 2^{-|c_i|} \le 1$$

(We proved this lemma in the class.)

Lemma 6. For every set of natural numbers ℓ_1, \ldots, ℓ_n such that

$$\sum_{i=1}^{n} 2^{-\ell_i} \le 1$$

there exists a prefix-free binary code $(d_1 \ldots, d_n)$ such that $|d_i| = \ell_i$ for all $i = 1, \ldots, n$.

(We proved this lemma in the class a week ago in terms of "strategies" for games with yes-and-no questions.)

References

[1] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley Inc., New York.