
“Calcul formel avancé et application”. Brief lecture notes.

26.09.2024. Lecture 3.

3.1 Hamming distance

Definition 1. For any alphabet Σ, the Hamming distance between words x̄ = x1 . . . xn, ȳ = y1 . . . yn ∈ Σn

is defined as the number of indices i such that xi 6= yi (the number of positions between 1 and n where the
words x̄ and ȳ differ from each other). In this lecture we focus on the case Σ = {0, 1}, but in in general it
can be any finite alphabet.

Let us denote the Hamming distance between x̄ and ȳ as distH(x̄, ȳ). Observe that the Hamming distance
satisfies the basic properties of distance familiar to us from Euclidean space:

• distH(x, x) = 0,

• distH(x, y) = distH(y, x),

• distH(x, y) ≤ distH(x, z) + distH(y, z).

In the space Σn with the Hamming distance we can re-use the standard notion of a sphere and a ball. For
example, a ball of radius r with the center at x is the set

Br(x) = {y : distH(x, y) ≤ r}.

Let us mention that for the binary alphabet Σ = {0, 1}n, the Hamming distance between x1 . . . xn and
the word that consists of n zeros 00 . . . 0︸ ︷︷ ︸

n

is equal to the number of ones in the words x1 . . . xn. This number

is called the Hamming weight of x1 . . . xn.

3.2 Binary error correcting codes

We say that a set of binary strings {c1, . . . , cK} (where each ci belongs to {0, 1}n) is a binary code correcting
e errors, if for every w ∈ {0, 1}n there exists at most one ci in the code such that

distH(w, ci) ≤ e.

The strings (words) in a code are called codewords of the code. The definition can be reformulated as follows:
a set of strings is a code correcting e errors, if the balls of radius e (in Hamming’s metrics) centered at the
codewords are pairwise disjoint. This definition has a clear combinatorial meaning: if the noise corrupts
(changes) in a codeword at most e letters, we are still able to reconstruct the initial codeword. Observe
that a set of words is a code correcting e errors, if and only if for every two codewords v and w we have
distH(v, w) > 2e.

Proposition 1. If {c1, . . . , cK} ⊂ {0, 1}n is a code correcting e errors, then

K ≤ 2n

1 + C1
n + C2

n + . . . + Ce
n

.

Proof. In the space {0, 1}n, every ball of radius e contains

1 + C1
n + C2

n + . . . + Ce
n

points (the point which is the center of the ball, the C1
n = n points at the distance exactly 1 from the center,

the points at the distance 2 from the center, . . . , the points at the distance exactly e from the center).
The balls of radius e centered at the codewords must be disjoint, and they all belong to the set {0, 1}n of
cardinality 2n.

Corollary 1. If we need to correct one error, then we cannot have more than 2n/(n+1) codewords of length
n. For example, we cannot have more than 27/(7 + 1) = 16 binary codewords of length 7 in a code correcting
one error.



3.3 Linear codes

We can understand {0, 1}n as a the linear space (= vector space) (Z/2Z)n, i.e., the n-dimensional linear
space over the field of two elements. In this space, the operation of the sum of two vectors is the XOR of
the vectors’ coordinates. In the field Z/2Z there are only two elements (zero and one), so the operations
of multiplication of a vector by a constant are trivial (multiplication by 1 does not change the vector,
multiplication by 0 gives the vector whose all coordinates are equal to zero).

A code {c1, . . . , cK} ⊂ (Z/2Z)n is called linear, if it is a linear subspace in (Z/2Z)n. Observe that the
zero vector (the vector whose all coordinates are equal to zero) is a always a codeword of a linear code.

A k-dimensional linear subspace in a vector space V can be defined in two different ways:

• by k vectors that provide a basis in this subspace,

• by (n − k) linear equations such that this subspace is the set of solutions of this system of linear
equations.

Equivalently, these two ways can be explained as follows. A linear code can be specified

• by a generating matrix G with k columns and n rows, such that the codewords are all vectors of the
form 

x1

x2

...

...

...
xn


= G ·


w1

w2

...
wk



(columns of G are vectors that form a basis in the space of all codewords)

• by a system of linear equations or, equivalently, by a checksum matrix H with n columns and k rows,
such that the codewords are all vectors satisfying

H ·



x1

x2

...

...

...
xn


=


0
0
...
0



Proposition 2. A binary linear binary code corrects e errors if and only if every non-zero codeword contains
at least 2e + 1 ones.

Proof. First of all, we observe that a code corrects e errors if and only if the distance between every two
codewords is at least 2e+1. Thus, we need to characterise the linear codes where the distance between every
two codewords is greater or equal to 2e + 1.

If v and w are codewords in a linear code, then the bitwise XOR of v and w is also a codeword u.
Therefore, the Hamming distance between v and w is equal to the Hamming weight of some codeword u.
Thus, we can guarantee that the distance between every two codewords is greater or equal to 2e + 1 if the
Hamming weight of every codeword z is greater or equal to 2e + 1 (besides the only one exception — the
zero codewords).

The only if part follows from the observation that the Hamming weight of a codeword z is equal to the
Hamming distance between z and the zero codeword 000 . . . 0︸ ︷︷ ︸

n

.
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Proposition 3. A checksum matrix H with n columns and s rows defines a linear code that corrects 1
errors, if and only if (i) H contains no column of all zeros, and (ii) all columns in H are pairwise different.

Proof. This follows from the fact that multiplication by H should not annulate any non-zero vectors with
Hamming weight strictly less than 2e + 1 = 3. In other words, the matrix should not annulate vectors that
contain exactly one or exactly two 1s.

For a fixed s, a matrix H with m rows and n columns such that there is no column of all zeros and all
columns in H are pairwise different can contain at most n = 2m − 1 columns (all non-zero binary vectors of
length m, without repetition). Here is an example of such a matrix for m = 4 and n = 2m − 1 = 15 :

H =


0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


Such a checksum matrix defines a vector space of dimension

n−m = 2m − 1−m

(the space of solution of a system of m linear equations with n = 2m − 1 variables). Therefore, we obtain a
linear code with

2n−m = 22
m−m−1

codewords. This code is called a Hamming code.

Important Fact: hamming codes are optimal among all codes correcting one error: we cannot obtain any
code with the same length of codewords n and greater number of codewords. Indeed, the Hamming balls of
radius 1 contain n + 1 points; since the balls of radius 1 constructed around all codewords must be disjoint,
we have

(n + 1) · [number of codewords] ≤ 2n.

Thus, the number of codewords is bounded by

2n

n + 1
=

2n

2m
= 2n−m = 22

m−m−1,

which is exactly the number of codewords in the code constructed above. Such a code is called Hamming
code.

3.4 Correcting errors in the Hamming code

If H is a checksum of a Hamming code, then for every vector

w̄ =



0
0
...
0
1
0
...
0
0


(with 1 at the i-th position and 0s at all other positions), the product H · w̄ is exactly the i-th column of H
(let us remind that the i-th column of H represent the binary expansion of the number i). We will use this
fact to describe a simple algorithm of decoding of the Hamming code.
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Let w̄ = (w1 . . . wn) be a codeword of the Hamming code, i.e., a string of bits such that

H ·



w1

w2

...

...

...
wn


=


0
0
...
0



(where H is the checksum matrix of the hamming code, with m rows and n = 2m − 1 columns).
Let us flip one bits in w̄ and denote the result w̄′. The Hamming code corrects one error, so we can

reconstruct w̄ uniquely given the “corrupt” vector w̄′. We will show that we can do it quite efficiently.
Observe that w̄ + w̄′ gives a vector

v̄ =



0
0
...
0
1
0
...
0
0


with 1 at the only position where w̄ and w̄′ differ and with 0s at all other positions. If we multiply w̄′ by
H, we will get a string of of m bits, which is called syndrome of w̄′. It is equal to

H · w̄′ = H · (w̄ + ū) = H · w̄ + H · v̄ =


0
0
...
0

 + H · v̄ = H · v̄.

So the syndrome is equal to H · v̄, and therefore it shows which bit in w̄′ is corrupt. Thus, the syndrome
will give us the binary expansion of the index of the corrupt bit. For example, if m = 3 and

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 ,

the string w̄ = (1010101) is a codeword. Let us flip the 4-th bit, w̄′ = (1011101). When we compute the
syndrome of w̄′ (the product of the checksum matrix H and the column-vector w̄′), we get

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 ·


1
0
1
1
1
0
1


=

 0 · 1 + 0 · 0 + 0 · 1 + 1 · 1 + 1 · 1 + 1 · 0 + 1 · 1
0 · 1 + 1 · 0 + 1 · 1 + 0 · 1 + 0 · 1 + 1 · 0 + 1 · 1
1 · 1 + 0 · 0 + 1 · 1 + 0 · 1 + 1 · 1 + 0 · 0 + 1 · 1

 =

 1
0
0



(the calculations done modulo 2). The resulted syndrome (100) is the binary expansion of the number
4 = 1 · 22 + 0 · 21 + 0, which is equal to the position of the corrupt bit.
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3.5 Encoding procedure for the Hamming code

For an error correcting code C = {c1, . . . , c2k} with ci ⊂ {0, 1}n, we can choose an encoding procedure is a
proc Enc: {0, 1}k → {0, 1}n assigns to each binary string of length k the corresponding codeword. Even if we
fix the set of codewords C (in our case, it is a linear subspace of dimension k in (Z/2Z)n), we can establish a
bijection between {0, 1}k and C in many different ways. Moreover, even a linear mapping between (Z/2Z)k

and C can be defined in many different ways. However, not all encoding procedures are equally useful in
practice. In what follows we discuss a simple and natural encoding for the Hamming codes.

We consider a Hamming code with the length of the codewords n = 2m − 1. Let us recall that the
checksum matrix consists of all non-zero binary columns of size m, e.g., for m = 3 we have

H =


0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
∗ ∗ ∗


Observe that m of these columns contain exactly one bit 1 (and k − 1 bits 0). Let us call these columns
special (in our example the special are the columns one, two, and four). If we are looking for a solution a of
linear system defined by the checksum matrix,

x4 + x5 + x6 + x7 = 0
x2 + x3 + x6 + x7 = 0

x1 + x3 + x5 + x7 = 0
∗ ∗ ↑ ∗ ↑ ↑ ↑

w1 w2 w3 w4

and we fix all the values xi for non-special columns, we can then easily compute the corresponding values of
the special xi.

Thus, in our example we can encode a string of four bits (w1, w2, w3, w4) into a codeword (x1, x2, x3, x4, x5, x6, x7)
as follows:

x3 := w1

x5 := w2

x6 := w3

x7 := w4

x1 := w1 + w2 + w4 mod 2
x2 := w1 + w3 + w4 mod 2
x4 := w2 + w3 + w4 mod 2

Such a string of 7 bits will satisfy system of linear equations determined by the matrix H and, therefore,
this string will be a codeword of the Hamming code.

Thus, we have a simple algorithm of encoding, which computes for a a bit string (w1 . . . wk) the corre-
sponding codeword (x1 . . . xn). Observe that in our encoding procedure every bits wi of the initial message
is embedded directly in the codeword: in the example above, the bits w1, . . . , w4 appear in the corresponding
codeword (x1 . . . x7) at the positions 3, 5, 6, 7 respectively. Such a code is called systematic. For a systematic
code, if there is no error in the codeword, the procedure of decoding is trivial (in the example discussed
above, it is enough to “erase” in the codeword the bits x1, x2, and x4, and the remaining four bits will give
the original message (w1w2w3w4)).

3.6 The game guess a number with one false response

In the class we discussed how to use the Hamming codes to play the game guess a number, where the first
players chooses a natural number x between 1 and N , and the second players asks yes/no questions. The
first player is allowed to give at most one false answer. The challenge is, as usually, to suggest a strategy with
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the minimum number of questions so that the second player can reveal the number x, despite one possible
false answer of the first player.

Without loss of generality we may assume that the second player always asks the same number of
questions, whatever x is given and whatever answers the first player gives, i.e., the average number of
questions is the same as the worst case number of questions. Indeed, if some “branch” of the protocol is
shorter than the others, we can add there dummy questions; this would not worsen the strategy performance
since we only care of the number of questions in the worst case situation.

In what follows we discuss lower and upper bounds on the size of the optimal strategy for a specific
example of N . Let us take, for instance, N = 2048. Assume that there is a strategy where the second player
reveals a number x ∈ {1, . . . , N} after asking n questions. We fix this strategy of the second player. We
know that for every x, the first player may choose a question between 1 and n to give a false answer, or
decide to give all true answers. Thus, for every possible x there are n + 1 possible sequences of answers.
Since each sequence of answers must correspond to only one number x, we have

N ≤ 2n/(n + 1).

As N = 2048, we see that n must be at least 15 (for n = 1, . . . , 14 we would have 2n/(n + 1) < 2048, which
gives a contradiction with the inequality above).

Let us show now that 15 questions is enough to guess an integer number x between 1 and n = 2048 with
one false answer. We will construct such a strategy using the Hamming code for s = 4 and n = 24 − 1 = 15.
Indeed, in this code we have 2n−s = 2048 codewords of length 15, and every two codewords doffer in at least
3 positions. We can associate these codewords with the numbers {1, . . . , N}. The second player should ask
questions

• Does the 1-st bits of the x-th codeword equal to 1 ?

• Does the 2-nd bits of the x-th codeword equal to 1 ?

• Does the 3-rd bits of the x-th codeword equal to 1 ?

...

• Does the 15-th bits of your codeword equal to 1 ?

The answers to this question give us the bits of the x-th codeword, possibly with one error (if one answers was
false). But even of one of the answers is false, the Hamming code allows to reconstruct the entire codeword.
This is enough to reveal the number x chosen by the first player.

In the class we also discussed an optimal strategy in this game for N = 100.
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