
«Calcul formel avancé et applications». Brief lecture notes.

11.09.2025. Lecture 1.

1. The game “guess a number” : one player chooses an integer x between 1 and n = 100, another player
must determine this number by asking questions with answers yes or no. How many questions should be
asked to determine the number x with certainty ? There is a simple strategy that allows to find the chosen
number in ⌈log2 n⌉ questions (bisection). Moreover, there is a non-adaptive strategy with the same number
of questions (the second player asks bits of the binary expansion of the chosen number ; in this strategy all
questions can be formulated in advance, before the first response).

These strategies are optimal : no strategy allows to reveal the chosen number in less than ⌈log2 n⌉
questions (in the worst case). Indeed, every guessing strategy can be represented as a binary rooted tree
(with questions in the internal nodes and the guessed numbers in the leaves). Since such a tree must have
at least n leaves (one leave for each possible answer), the depth of the tree must be at least ⌈log2 n⌉.

2. Weighing problems (finding a counterfeit coin). In the class we discussed several variations of the
classic problem of finding a counterfeit coin. In all these problems we assume that there are several identical-
looking coins, one of which differs from the others in weight (while all other coins have the same weight).
We have at our disposal a scale without supplementary weights. With this scale we can compare any two
groups of coins and find out whether they differ in weight or not (and if they differ, which group is lighter
and which one is heavier).
Example 1. We are given n = 9 coins and one of them is fake. It is known that the fake coin is lighter than
the genuine ones. How many weighings does it take to find the fake coin ?

It is not hard to see that this task requires 2 weighings : there exists a strategy that finds the fake coin
in two operations, and there is no strategy which does the same in only one operation.
Example 2. We are given again n = 9 coins and one if them is fake. It is known that the fake coin is lighter
or heavier than the genuine ones, but it is not known which is the case. How many weighings does it take to
find the fake coin ?

In this setting we need 3 weighings : there exists a strategy that finds the fake coin in three operations,
and there is no strategy which does the same in only two operations. The intuitive explanation is that in
any strategy we learn some unnecessary information (in most cases, we also learn whether the fake coin is
lighter or heavier than the genuine ones). In the class we discussed a complete proof of this statement.
Example 3. We are given n = 12 coins and one of them is fake. The fake coin can be heavier or lighter than
the genuine ones. How many weighings does it take to find a fake coin ? In the class we found out that the
fake one can be found in four weighings, and that two operations is not enough.

Homework 1. What is the number of weighings required to find among 12 coins the fake one (which can
be heavier or lighter than the genuine ones) ? Hint : improve the lower bound 3 or the upper bound 4 proven
in the class.

Homework 2. What is the number of weighings required to find among 14 coins the fake one (which can
be heavier or lighter than the genuine ones) ?



3. The game “guess a number” revisited : we assume again that one player chooses an integer number
x between 1 and n = 100, and another player should find this number by asking questions with answers yes
or no. However, this time the first player is allowed to lie once (i.e., may give at most one false answer). How
many questions should be asked to determine the number x in this setting ?

In the class we discussed an adaptive strategy that requires 2⌈log2 n⌉+1 questions (repeat each question ;
if the answers are different, ask the same question for the third time). We also observed that in every strategy
the second player will learn a lot of extra information — whether the first player has lied or not, and in which
answer. This observation allows us to prove that every strategy should contain at least 11 questions (this is
the minimum number k such that 2k ≥ n · (k + 1) = 100(k + 1)).

In this lecture we did not determine the optimal number of questions in this guessing game. We only
have the lower bound k ≥ 11 and the upper bound k ≤ 2⌈log2 100⌉+ 1 = 15.

4. Hamming distance.

Definition 1. The Hamming distance between binary words x̄ = x1 . . . xk, ȳ = y1 . . . yk (both of the same
length k) is defined as the number of indices i such that xi ̸= yi (the number of positions between 1 and
k where the words x̄ and ȳ differ from each other). We denote the Hamming distance between x̄ and ȳ as
DistH(x̄, ȳ).

Observe that the Hamming distance satisfies the basic properties of distance familiar from Euclidean
space :

— DistH(x, x) = 0,
— DistH(x, y) = DistH(y, x),
— DistH(x, y) ≤ DistH(x, z) + DistH(y, z).

In the space {0, 1}k with the Hamming distance we can re-use the standard notion of a sphere and a ball. A
ball of radius r with the center at x is the set

Br(x) = {y : DistH(x, y) ≤ r}.

A sphere of radius r with the center at x is the set

Sr(x) = {y : DistH(x, y) = r}.

Let us mention that the Hamming distance between x1 . . . xk and the word that consists of n zeros 00 . . . 0︸ ︷︷ ︸
k

is

equal to the number of ones in the words x1 . . . xk. This number is called the Hamming weight of x1 . . . xk.

5. Binary error correcting codes. We say that a set of binary strings {y1, . . . , yN} (where each yi belongs
to {0, 1}k) is a binary code correcting e errors if for every w ∈ {0, 1}k there exists at most one yj in the code
such that

DistH(w, yj) ≤ e.

The strings (words) in a code are called codewords of the code. The definition can be reformulated as follows :
a set of strings is a code correcting e errors, if the balls of radius e (in the Hamming metrics) centered at
the codewords are pairwise disjoint. This definition has a clear combinatorial meaning : if at most e bits of a
codeword are altered by noise, the original codeword can still be reconstructed. Observe that a set of words
is a code correcting e errors, if and only if for every two codewords yi and yj we have DistH(yi, yj) ≥ 2e+1.

Proposition 1. If {y1, . . . , yN} ⊂ {0, 1}k is a code correcting 1 error, then 2k ≥ N(k + 1).

Démonstration. In the space {0, 1}k, every ball of radius 1 contains 1 + k points (the point which is the
center of the ball and the k points at the distance exactly 1 from the center). The balls of radius 1 centered
at the codewords must be disjoint, and they all belong to the set {0, 1}k of cardinality 2k.

Thus, if we need to correct one error, then we cannot have more than 2k/(k + 1) codewords of length k.
For example, we cannot have more than 27/(7 + 1) = 16 binary codewords of length 7 in a code correcting
one error.
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