«Calcul formel avancé et applications». Brief lecture notes.
18.09.2025. Lecture 2.

1. Binary error-correcting codes. We define a set of binary strings C = {y!,...,4™} € {0,1}* to be a
binary code correcting e errors if for every w € {0,1}* there exists at most one ¢/ in the code such that

Dist g (w, y’) < e.
The words (bit strings) in a code are called codewords.
Observation 1. A set C C {0,1}* is a binary code correcting e errors if and only if

‘min  Distg(y’,y?) > 2e + 1.
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In class we proved the following two statements.

Proposition 1 (Hamming’s bound, a necessary condition for the existence of a code). If {y',...,y"V} C
{0,1}* is a code correcting e errors, then
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In particular, for codes correcting one error we have N < {97

Proposition 2 (Gilbert’s bound, a sufficient condition for the existence of a code). If
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then there exists a binary code {y',...,yN} C {0,1}* correcting e errors.
Homework 1. A mathematician has chosen in {0, 1}!? a subset of k binary words x1, ¥, ...,z so that the

Hamming distance between any two of these words is disty (z;, ;) > 6 for all i # j. Prove that k < 20.

2. Linear algebra for arithmetic modulo 2. We can understand the set {0,1}* as a vector space
(Z/27)k, i.e., the k-dimensional space over the field of two elements. In this space, the sum of two vectors
is defined as the coordinate-wise XOR. The vector space (Z/2Z)* contains a special element

(zero vector) such that for all x € (Z/2Z)* we have x + 0 = x. In the field Z/2Z there are only two
elements (zero and one), so scalar multiplication is trivial: multiplication by 1 does not change the vector,
multiplication by 0 gives the zero vector.
A family of vectors Xi,...,X,, in (Z/2Z)* is called linearly independent if for all indices 1 < iy < ... <
i < m the sum
Xil ++Xz; 7£0

A linear subspace in (Z/2Z)* is a set V C (Z/2Z)* such that for all vectors x,y € (Z/2Z)* the sum
X + 7y also belongs to V. In class we proved that in every subspace V C (Z/27)* there is a subset B =
{21,...,2m} CV called a basis such that



e the elements of B are linearly independent,

e every element x € V' can be represented as the sum of several elements of B,

X=12;y +...+2;.

We observed that if a basis of V' consists of m vectors, then the cardinality of V is 2™. This implies, in
particular, that all bases of V must contain the same number of elements m. This number is called the
dimension of the linear subspace V.

An m-dimensional linear subspace V' C (Z/2Z)* can be defined in two different ways:

e by m vectors that provide a basis in V,
e by (k —m) linear equations such that V' is the set of all solutions of this system of linear equations.
Equivalently, these two ways can be explained as follows. A linear subspace V C (Z/2Z)* can be specified

e by a generator matrix G of size k x m such that the vectors of V' are exactly those that can be
represented as

T1 w1
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for wy,...,wy, € {0,1} (the m columns of G form a basis of V);

e by a parity-check matrix H with k columns and m — k rows, such that the codewords are all vectors

satisfying
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3. The Hamming codes. A set C C {0, 1}* is called a binary linear code correcting e errors if C is a binary
code correcting e errors (as defined above) and at the same time this set is a linear subspace of (Z/27Z)".
Observe that the zero vector (the vector whose coordinates are all equal to zero) is always a codeword in a
linear code, and the total number of codewords in a binary linear code is always a power of 2.

Proposition 3. A binary linear code corrects e errors if and only if every non-zero codeword contains at
least 2e + 1 ones.

Proof. First of all, we observe that a code corrects e errors if and only if the distance between every two
codewords is at least 2e4+1. Thus, we need to characterize the linear codes where the distance between every
two codewords is greater than or equal to 2e + 1.

If v and w are codewords in a linear code, then the bitwise XOR of v and w is also a codeword wu.
Therefore, the Hamming distance between v and w is equal to the Hamming weight of some codeword u.
Thus, we can guarantee that the distance between every two codewords is at least 2e + 1 if the Hamming
weight of every non-zero codeword z is at least 2e + 1.

The only if part follows from the observation that the Hamming weight of a codeword z is equal to the
Hamming distance between z and the zero codeword 000...0. O

n

In class we proved the proposition:



Proposition 4. A parity-check matric H with k columns and m rows defines a linear code that corrects e
errors if and only if every 2e columns in H are linearly independent.

Corollary 1. A parity-check matriz H with k columns and m rows defines a linear code that corrects one
error if and only if (i) H contains no column of all zeros, and (ii) all columns in H are pairwise different.

A matrix H with m rows such that there is no column of all zeros and all columns in H are pairwise
different can contain at most k = 2™ —1 columus (all non-zero binary vectors of length m, without repetition).
Here is an example of such a matrix for m =3 and k =2" —-1=7:

0 001 1 11
H=101 10 0 11
101 0101

Such a checksum matrix represents a system of linear equations (as usual, in the arithmetic modulo 2) with
k variables :

T 0

In particular, for the 3 x 7-matrix H from the example above we have the system of equations

Ty+T5+x6+27 = 0,
To+ 23+ 26 +27 = 0,
r1+x3+a5+x7 = 0.

This system contains m (independent) linear equations for k variables. Therefore, the set of all solutions
X = (z1,...,xy) of this system is a linear subspace in (Z/2Z)* of dimension

k—m=2"—m— 1.
Therefore, we obtain a linear code with
N = 2k7m _ 22m7m71

codewords. This code is called the Hamming code.

Important fact: The Hamming codes are optimal among all codes correcting one error: we cannot obtain
any code correcting one error with the same length of codewords k£ and a greater number of codewords.
Indeed, the Hamming balls of radius 1 contain k£ 4 1 points; since the balls of radius 1 constructed around
all codewords must be disjoint, we have

(k4 1) - [number of codewords] < 2*.
Thus, the number of codewords is at most
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_ = _ 2k:—m — 22m—m—1
k+1 2m

(see the proof of the Hamming bound above), which is exactly the number of codewords in the code that we
constructed.

Homework 2. The parity check matrix of the Hamming code with codewords of length 15 is

0 000O0OO0OO0O1 1111111
H— 000111 100O0O0T1T1T171
0110011001 1O00T171
101 010101010101



(a) How many errors does this code correct?

(b) Does there exist a binary word x of length 15 that is not a codeword for this code and that cannot be
obtained from any codeword by inverting one bit?

(¢) Is the bit sequence x = (001010011000011) a codeword of this code? If not, which bit should be inverted
to obtain a codeword?

(d) Is the bit sequence 2 = (111111100000000) a codeword of this code? If not, which bit should be inverted
to obtain a codeword?

4. Correcting errors in the Hamming code. If H is the checksum matrix of the Hamming code, then

for every vector
0

0
(with 1 at the i-th position and Os at all other positions), the product H - x is exactly the i-th column of H.
(In our construction, the i-th column of H represents the binary expansion of the number i.) We will use
this fact to describe a simple algorithm for decoding the Hamming code that involves revealing an eventual

error in the codeword.
Let x = (21 ...xx) be a codeword of the Hamming code, i.e., a string of bits such that

x
i) 0
. 0
H- = .
0
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(where H is the checksum matrix of the Hamming code, with m rows and k& = 2™ — 1 columns). Let us
flip one bit in x and denote the result x’. The Hamming code corrects one error, so we can reconstruct x
uniquely given the “corrupt” vector x’. We will show how to do it quite efficiently.

Observe that x’ = x + w, where
0

0
is the vector with 1 at the only position where x and x’ differ and with Os at all other positions. If we
multiply x’ by the check-sum matrix H, we will get a string of m bits, which is called the syndrome of x'.
It is equal to

0

0



So the syndrome of x’ is equal to H -w. The feature of the Hamming code is that the syndrome is the binary
expansion of the index 7 of the corrupt bit. For example, if m = 3 and

0 001 111
H=|101 10 0 11
101 0101

the string x = (1010101) is a codeword. Let us flip the 4-th bit, x’ = (1011101). When we compute the
syndrome of x’ (the product of the checksum matrix H and the column-vector x’), we get

1

0
0 001111 1 0-1+40-0+0-141-14+1-14+1-0+1-1 1
0110011 1 |1=10-1+1-04+1-140-14+0-1+1-0+1-1 =10
101 01 01 1 1-14+40-0+1-14+0-1+1-140-041-1 0

0

1

(the calculations done modulo 2). The resulting syndrome (100) is the binary expansion of the number
4=1-2240-2"+0 = 1002, which is the index of the position of the corrupt bit.

5. The game guess a number with one false response. In the class we discussed how to use the
Hamming codes to play the game guess a number, where the first player chooses a natural number x between
1 and N, and the second player asks yes/no questions. The first player is allowed to give at most one false
answer. The challenge is to suggest a strategy with the minimum number of questions so that the second
player can reveal the number x, despite one possible false answer of the first player.

In what follows we discuss lower and upper bounds on the size of the optimal strategy for a specific
example of N. Let us take, for instance, N = 2048. Assume that there is a strategy where the second player
can determine x € {1,..., N} after asking k questions. We fix this strategy of the second player. We know
that for every x, the first player may choose a question between 1 and k to give a false answer, or decide to
give all true answers. Thus, for every possible x there are k + 1 possible sequences of answers. Since each
sequence of answers must correspond to only one number z, we have

N <2¥/(k+1).

As N = 2048, we see that k must be at least 15 (for k = 1,...,14 we would have 2¥/(k + 1) < 2048, which
gives a contradiction with the inequality above).

Let us show now that 15 questions is enough to guess an integer z between 1 and n = 2048 with one
false answer. We will construct such a strategy using the Hamming code with parameters m = 4 and
k=2%*—1=15. Indeed, in this code we have 2¥~™ = 2048 codewords of length 15, and every two codewords
differ in at least 3 positions. We can associate these codewords with the numbers {1,..., N}. The second
player should ask questions

e Does the 1st bit of the xth codeword equal to 1 7
e Does the 2nd bit of the xth codeword equal to 1 7

e Does the 3rd bit of the xth codeword equal to 1 ?

e Does the 15-th bits of your codeword equal to 1 7

The answers to this question give us the bits of the z-th codeword, possibly with one error (if one answer was
false). But even if one of the answers is false, the Hamming code allows to reconstruct the entire codeword.
This is enough to reveal the number x chosen by the first player.

In the class we also discussed an optimal strategy in this game for N = 100.



