«Calcul formel avancé et applications». Brief lecture notes.
25.09.2025. Lecture 3.

1. Efficient encoding for the Hamming code. For an error-correcting code C = {¢1,...,con} with
c; € {0,1}*, one can choose an encoding procedure as a mapping

Enc: {0,1}" — {0,1}"

that assigns to each binary string of length & the corresponding codeword. Even if we fix the set of codewords
C (for a binary linear code, it is a linear subspace of dimension k in (Z/27Z)*), we can establish a bijection
between {0,1}" and C in many different ways. Moreover, even a linear mapping between (Z/2Z)"™ and C
can be defined in many different ways. However, not all encoding procedures are equally useful in practice.
In what follows we discuss a simple and natural encoding for the Hamming codes.

We consider a Hamming code with the length of the codewords n = 2" — 1. Let us recall that the
checksum matrix consists of all non-zero binary columns of size m, e.g., for m = 3 we have

0 001 1 11
01 10011

H= 1 01 01 01
%k *

Observe that m of these columns contain exactly one bit 1 (and m — 1 bits 0). Let us call these columns
special (in our example the special are the columns one, two, and four). If we are looking for a solution of
the linear system defined by the checksum matrix,

ya +ys +ye +tyr = 0
Y2 + Y3 +ye +yr = 0
Y1 +ys3 +Ys +yr = 0
k% T ) ) )
Ty ) T3 T4

and we fix all the values x; for non-special columns, then we can easily compute the corresponding values
of the special ;. In our example we can encode a string of four bits (z1,z2,23,24) into a codeword

(Y1, 92,93, Y4, Y5, Ys, y7) as follows:

Yys = I
Ys = T2
Ys = I3
Yyr = X4
Yy1 = T1+ o+ x4 mod 2
Yo = x1+x3+ x4 mod 2
Ys = To+x3+ x4 mod 2

Such a string of 7 bits will satisfy the system of linear equations determined by the matrix H and, therefore,
this string is a codeword of the Hamming code.

Thus, we have a simple encoding algorithm, which computes for a bit string (z; ...xy) the corresponding
codeword (y; . ..yn). Observe that in our encoding procedure every bit z; of the initial message is embedded
directly in the codeword: in the example above, the bits x1,..., x4 appear in the corresponding codeword
(y1...y7) at the positions 3,5,6, 7 respectively. Such a code is called systematic. For a systematic code, if
there is no error in the codeword, the procedure of decoding is trivial (in the example discussed above, it is
enough to “erase” in the codeword the bits y1, y2, and y4, and the remaining four bits will give the original
message (T1T2x3%4)).



2. Asymptotic bound for the size of a ball in the Hamming space. We have defined in the space
{0,1}* the Hamming distance Distg(x,%y) as the number of positions where the k-bit words x and y differ
from each other. In this space, a sphere and a ball of radius r (centered at x) are defined as

S, (z) ={y €{0,1}* : Disty(z,y) =1}

and
B.(z) ={y € {0, 1}]C : Disty(x,y) <r}

respectively.
It is easy to see that for r < k the number of points in a ball is equal to

= (5 () o ()

As we will see later, in coding theory it is more important to know this value in the logarithmic scale, i.e.,
log | By (x)]. So let us estimate the asymptotic behavior of log |B,(z)| for r = ak (we will need this value for

a constant o < 1/4). Since (7’;) = W, we need to compute the sum
14k k! k! k!
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Observe that % is the biggest term in this sum. Therefore,

k) g M K Kl oK
< < R
T s T e s e Ty R U e v

Thus, our aim is to estimate the value log (ﬁ) To this end, we use Stirling’s approximation of the

factorial: n! = v/2mn (%)n (14 0(1)) as n — oo. In the class we verified that for r = ak we have

k! 1 1
o8 (g ) = (om0~ tom 2 ) b 0o,

It follows that for r = ok
oh(a)k—0O(logk) |B,(z)] < Qh(a)kJFO(lng)’

where h(a) = alog L + (1 — a)log .




3. Asymptotic versions of the Hamming and Gilbert bounds. Now we know the number of points
in a ball of a given radius in the Hamming space. We can revisit the upper and lower bounds for the
sizes of binary codes correcting e errors and estimate the asymptotic meaning of Hamming’s and Gilbert’s
inequalities.

Proposition 1 (Hamming’s bound, a necessary condition for the existence of a code). Let N = 2" and
e=ak (fora<1/2). If {c*,...,cN} C {0,1}* is a code correcting e errors, then

and, therefore,
n < (1 — h(a))k + O(logk).

Therefore, the “capacity” n/k of a binary code that allows to correct a fraction o of errors cannot be greater
than

1—h(a)+o(1)
as k — oo, see the red line in the figure below.

Proposition 2 (Gilbert’s bound, a sufficient condition for the existence of a code). Let N = 2" and e = ak
(for a < 1/4). If

2k
N <
= k k kY’
T+ (1) +G)+ o+ ()
then there exists a binary code {c',...,cN} C {0,1}* correcting e errors. In other words, the inequality

n < (1 —h(a))k — O(logk)

is a sufficient condition for the existence of a binary code correcting e errors.
Therefore, if a point («, 8) lies below the curve 1 — h(a) (green line in the graph below), then for large

enough k there exists a code {c',...,c*"}  {0,1}* with % = B and correcting e > ak errors.
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4. Shannon’s entropy. For a random variable X with k possible values c1, ..., ¢k such that fori =1...k
Prob[X = ¢;] = p;, we define its Shannon’s entropy as

k
1
H(X):= E pilog —
i=1 pi

(with the usual convention 0 -log & = 0).
In the class we proved:

Proposition 1. Let us fix an alphabet with k letters {ci,...,cx} and consider all words in this alphabet
that consist of N letters and contain py N copies of letter ¢y, ..., pg copies of letter ¢g. In other words, the
numbers p; are the frequencies of letter ¢; for i = 1,...,k (we assume that each number p; N is an integer).
Then the number of all such words is

k
(Z p; log pi> N+O(log N)
g\= .

In other words, Shannon’s entropy is the asymptotic rate of possible compression of a text with given
frequencies of the letters.

Proposition 2. For every random variable X distributed on a set of k values
H(X)>0

Moreover, H(X) = 0 if and only if the distribution is concentrated at one point (one probability p; is equal
to 1, and the other p; for j # i are equal to 0).

Proposition 3. For every random variable X distributed on a set of k values
H(X) <logk.
Moreover, H(X) =logk if and only if the distribution is uniform (p1 = ... =pp =

).

Proposition 4. Let (X,Y) be a pair of jointly distributed random variables, with joint distribution

=

pij = Prob[X = a; and Y = bj]
fori=1,...,nand j=1,...,m. Then H(X,Y) < H(X)+ H(Y).
Homework 1. Show that H(X,Y) < H(X)+ H(Y) if and only if X and Y are independent, i.e., for all ¢, j
Prob[X = a; and Y = b;] = Prob[X = a;] - ProbY = b;].

5. Entropy in combinatorial problems. In class, we revisited the exercises of finding a single fake coin
among n identical coins with a balance scale, and solved some of them using Shannon’s entropy.



