HAI709I : Fondements cryptographiques de la sécurité, Université de Montpellier, 2024

02/12/2024. Homework for Lecture 11.

Exercise 1. Let m_1 and m_2 be two natural numbers. Prove that if a prime number p divides $n = m_1 \cdot m_2$, then p must divide m_1 or m_2 .

Exercise 2. Prove that if P = NP then there exists a deterministic algorithm that finds for every input n (an integer numbers given by its binary expansion) the list of all its prime factors in polynomial time.

Exercise 3. Let $n = 323 = 17 \cdot 19$.

(a) Find without a computer a number x in the set $\{1, \ldots, n-1\}$ such that $x = 1 \mod 17$ and at the same time $x = -1 \mod 19$.

(b) Find without a computer four different numbers x in the set $\{1, \ldots, n-1\}$ such that $x^2 = 1 \mod n$.

(c) Find without a computer four different numbers x in the set $\{1, \ldots, n-1\}$ such that $x^2 = 16 \mod n$.