
HAI709I : Fondements cryptographiques de la sécurité, Université de Montpellier, 2023

07/10/2024. Homework for Lecture 5.

Exercise 1. Let Π = (Gen,Enc,Dec) be a computationally secure encryption scheme withMn = {0, 1}n.

Informal version of the question: Prove that an adversary cannot find in polynomial time the last bit of the
clear message even given access to the encrypted message together with the XOR of all bits of the clear
message.

Formal version of the same question: We consider the following experiment:

• Alice produces a random secret key k for the security parameter n,

k ← Gen(1n)

• Alice produces a random open messages m = x1 . . . xn of length n bits (with the uniform distribution,
i.e., each message can be chosen with the probability 1/2n)

• Alice computes an encrypted message e = Enc(m, k)

• Adversary obtains the encrypted message e and one more bits that is equal to the parity of all bits of
the open message, i.e., b := x1 ⊕ x2 ⊕ . . .⊕ xn, and tries to guess xn,

j ← Adv(1n, e, b).

The success of Adversary is defined as

success =

{
1, if j = xn
0, otherwise.

Prove that for every polynomial time computable algorithm Adv

|Prob[success = 1]− 1/2|

is a negligibly small function.

Exercise 2 (more difficult). Let Π = (Gen,Enc,Dec) be a computationally secure encryption scheme with
Mn = {0, 1}n.

Informal version of the question: Given access tot he encrypted message, a polynomial-time computable
adversary cannot predict the first two bits of the clear message with a probability significantly better than
1/4.

Formal version of the question: We consider the following experiment.

• Alice produces a random secret key k for the security parameter n,

k ← Gen(1n)

• Alice produces a random open messages m = x1 . . . xn of length n bits (with the uniform distribution,
i.e., each message can be chosen with the probability 1/2n)

• Alice computes an encrypted message e = Enc(m, k)

1

• Adversary obtains the encrypted message e, and tries to guess x1x2,

j ← Adv(1n, e), where j ∈ {00, 01, 10, 11}.

The success of Adversary is defined as

success =

{
1, if j = x1x2
0, otherwise.

Prove that for every poly-time computable algorithm Adv

|Prob[success = 1]− 1/4|

is a negligibly small function.

Exercise 3. Let Gn : {0, 1}0.5n → {0, 1}n be a pseudo-random generator.
(a) Show that there exists a deterministic (not polynomial time) algorithm Rev such that for every y ∈
{0, 1}n in the range of the function Gn this algorithm returns an x ∈ {0, 1}0.5n such that Gn(x) = y.
(b) Show that there exists a randomized polynomial time algorithm Rev′ such that for every y ∈ {0, 1}n
in the range of the function Gn with probability 2−n/2 this algorithm returns an x ∈ {0, 1}0.5n such that
Gn(x) = y and with probability 1− 2−n/2 returns the symbol ⊥ (failure).
(c) Show that there is no randomized polynomial time algorithm Rev′′ such that for every y ∈ {0, 1}n in
the range of G with a probability ≥ 3/4 this algorithm returns an x ∈ {0, 1}0.5n such that Gn(x) = y.
Explication informelle: It is always easy to invert any pseudo-random generator deterministically in expo-
nential time. It is always easy to invert a pseudo-random generator in polynomial time but with an expo-
nentially small probability. However, it must be hard to invert it in polynomial time with a non-negligible
probability.

Exercise 4. Let Gn : {0, 1}
√
n → {0, 1}n be a function computable by a deterministic algorithm in poly-

nomial time.
(a) Assume that there exists deterministic polynomial time algorithm InImage such that for every

y ∈ {0, 1}n

InImage(y) =

{
1, if there exists an x ∈ {0, 1}

√
n such that Gn(x) = y

0, otherwise.

Use the definition of a pseudo-random generator and prove that Gn cannot be a pseudo-random generator.
(b) Show that if P = NP than Gn cannot be a pseudo-random generator. Hint: use the conjecture

P = NP and construct InImage form (a).
(c) Assume that there exists randomized polynomial time algorithm ProbablyInImage such that for

every y ∈ {0, 1}n with probability 0.99 this algorithm returns{
1, if there exists an x ∈ {0, 1}

√
n such that Gn(x) = y

0, otherwise.

(and with probability 0.01 returns the opposite answer). Use the definition of a pseudo-random generator
and prove that in this case Gn cannot be a pseudo-random generator.

(d) Assume that there exists randomized polynomial time algorithm Rev such that for every y ∈ {0, 1}n
in the range of Gn this algorithm returns an x ∈ {0, 1}

√
n, and with probability≥ 0.99 we have Gn(x) = y.

Use the definition of a pseudo-random generator and prove that in this case Gn cannot be a pseudo-random
generator. Hint: use the algorithm Rev to simulate ProbablyInImage form (c).

2

Exercise 5. Let Gn : {0, 1}
√
n → {0, 1}n be a function computable by a deterministic algorithm in polyno-

mial time. Assume that there exists randomized polynomial time algorithm Rev that for every y ∈ {0, 1}n
in the range of Gn returns with probability ≥ 1/10 an x ∈ {0, 1}

√
n such that Gn(x) = y.

(a) [error amplification] Prove that there exists another polynomial time algorithm Rev′ that for every
y ∈ {0, 1}n in the range of Gn returns with probability ≥ 9/10 an x ∈ {0, 1}

√
n such that Gn(x) = y.

(b) [distinguishing from true randomness] Show that such a Gn cannot be a pseudo-random generator.
Hint: We are given that (i) Gn can be computed in polynomial time and that (ii) for every element in the

range of Gn we can compute in polynomial time its pre-image. Combining these two facts, one can show
that for y ∈ {0, 1}n we can verify in polynomial time whether y has a pre-image or not. So we can apply
the statement from Exercise 4.

3

