
HAI709I : Fondements cryptographiques de la sécurité, Univ Montpellier, 2024
Exercises for the second part of the semester.

The colors help to distinguish between the exercises for lectures by Katharina Boudgoust and Andrei
Romashchenko.

Exercise 1. Let p be a prime number. Prove that 1 · 2 · 3 · . . . · (p − 1) = −1 mod p. For example, for
p = 5 we have

1 · 2 · 3 · 4 = 24, and we see that 24 = −1 mod 5.

Exercise 2. Let p, q be two different prime numbers, each of them is strictly greater than 2, and n = p · q.

(a) Prove that if a2 = 1 mod n, then a2 = 1 mod p and a2 = 1 mod q.

(b) Prove that if a = 1 mod p and a = −1 mod q, then a 6= ±1 mod n but a2 = 1 mod n.

(c) Prove that there exists 4 different numbers x1, x2, x3, x4 in the set {1, 2, . . . n − 1} such that x2i = 1
mod n.

(d) Let n = 29 · 31. Find at least three different numbers x in {1, . . . , n − 1} such that x2 = 1 mod n.
(Try to do it without computer.)

Exercise 3. Assume that there exists a randomized polynomial time algorithm A such that for every com-
posite number n (represented by its binary expansion), A(n) with probability p > 1/2 returns a non-trivial
factor k of n (i.e., k 6= 1, k 6= n, and k divides n). With probability 1−p the algorithm may return a number
that is not a factor of n or stop without any answer.

Prove that there exists another randomized polynomial time algorithm B such that for every composite
number n (again, represented by its binary expansion), B(n) with a probability > 0,99 returns a non-trivial
factor k of n.

Exercise 4. (a) Prove that there exists an integer number n0 such that for all integers n > n0 (i.e., for all
large enough integer numbers) there exists an integer x

2n < x < 2n+2

such that x = p · q, where p and q are two different prime numbers.

(b) Show that there exists a a randomized algorithm that takes n as input and in time poly(n) with probability
> 0,99 produces an instance of such a number x. (You may use the Miller–Rabin test as a subroutine.)

(c) The same two questions as above but with a higher precision: 2n < x < 2n+1.

Exercise 5. We consider the group (G, ·, 1), where G = (Z/25Z)×.

i. What is the order ord(G) of the group? List its elements.

ii. Compute the inverse of 13 in the group.

iii. Compute (by hand!) 22777 in the group.

iv. Compute the subgroup 〈6〉 generated by 7.
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Exercise 6. We define the following squared exponent problem: Let g be a generator of a cyclic group G
and let t be sampled uniformly at random from {0, . . . , ord(G)− 1}. Given (g, gt, gt

2
), the problem asks to

find t.

Prove that there exists a reduction from the squared exponent problem to the computational Diffie-Hellman
(CDH) problem, introduced in class. In other words, prove that an adversary having non-negligible success
probability in solving CDH leads to an adversary having non-negligible success probability in solving the
squared exponent problem.

Exercise 7. Let Π = (Gen,Enc,Dec) be a correct and secure symmetric encryption scheme. We build the
following key-exchange protocol:

Alice samples a ephemeral key mA ← Gen and sends it to Bob. Bob sample the key kB and encrypts it
under the symmetric encryption scheme using mA as the key, i.e., mB ← Enc(kB,mA), and sends mB to
Alice. Alice computes kA ← Dec(mB,mA).

i. Prove that the scheme above is a correct key-exchange protocol.

ii. Prove that is not secure (against an eavesdropper).

Exercise 8 (Bonus). Let N = 41 · 47 and e = 3. Let us take the pair (N, e) as a public key of the RSA
signature scheme. Find the corresponding private key.

Exercise 9. If P = NP then there is no one-way functions.

Exercise 10. (a) Prove that every pseudo-random generator is a one-way function.

(b) Prove that if there exist one-way functions, then not all of them are pseudo-random generators. In
other words, if there exists a pseudo-random generator g : {0, 1}∗ → {0, 1}∗ (which must be a one-way
function), then there exists another one-way function f : {0, 1}∗ → {0, 1}∗ that is not a pseudo-random
generator.

(c) Prove that if there exist one-way functions, than at least for some one-way function f(x) the first bit of
the argument x is not a hard-core predicate (which means that the construction of a one-way function with
a hard core predicate is not trivial).

Exercise 11. Let h : {0, 1}∗ → {0, 1}∗ be a function computable in polynomial time by a deterministic
algorithm such that for every x ∈ {0, 1}n the value y = h(x) is a binary string of length bn/2c. (This
function obviously cannot be one-to-one; one image y may have many different pre-images x such that
h(x) = y.)

Assume that this function is not pre-image resistant in the following sense. There exists a polynomial-
time algorithm A such that for every n, for a randomly chosen x ∈ {0, 1}n, with probability > 0,5 on the
input y = h(x)

A(y) returns an x′ ∈ {0, 1}n such that h(x′) = y

(algorithm A finds one of many h-pre-images of y, which is possibly not equal to the original x).

(a) Prove that this function is not collision-resistant: there exists a polynomial-time algorithm B such that
for every even number n

• with probability > 0,5 : B(n) stops in poly(n) steps and returns two numbers x1, x2 of length n such
that x1 6= x2 and f(x1) = f(x2) (i.e., B finds a collision for f )
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• with probability < 0,5 : B(n) returns the symbol ⊥ (which means no answer).

(b) Prove a stronger property: there exists a polynomial-time algorithm B′ that for every even number n

• with probability > 0.99 : B′(n) stops in poly(n) steps and returns two numbers x1, x2 of length n
such that x1 6= x2 and f(x1) = f(x2)

• with probability < 0.01 : B′(n) returns symbol ⊥

Exercise 12. (a) Let Π = 〈Enc(), Dec(), Gen()〉 with the space of clear message M = {0, 1}n. As-
sume that there exists an algorithm A with the following property. For a uniformly randomly chosen
message (m1 . . .mn) ∈ M, a randomly chosen secret key k ← Gen(1n), and the encrypted message
e← Enc(m, k), the value

res← A(e)

computed by A with probability > 0,99 is equal to (m1,m2,m3). In other words, the adversary can reveal
with a very high probability the first three bits of the clear message. Prove that in this case Π does not
respect the formal definition of a scheme secure against an adversary computable in polynomial time.

(b)∗ The same question if with probability > 0,33 we have res = (m1,m2).

(c)∗∗ The same question if with probability > 0,13 we have

res = (m1,m2 ⊕m3,m4 ⊕m5 ⊕m6).

(d) Prove that even for a secure scheme Π there exist randomized polynomial time algorithms A2, A3, and
A6 such that

Prob
[
A2(e) = m1m2

]
=

1

4
,

Prob
[
A3(e) = m1m2m3

]
=

1

8
,

Prob
[
A6(e) = m1m2m3m4m5m6

]
=

1

64
.

Exercise 13 (optional; not necessary for the final exam). Assume there exists a one-way length preserving
permutation f with a hard-core bit h. Suggest a protocol of the game rock-paper-scissors between Alice and
Bob connected by a communication channel. It is assumed that both players are able to perform computa-
tions in polynomial time. If one of the players tries to cheat and deviates from the prescribed protocol, this
should give only negligibly small advantage in the probability to win.
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