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23/09/2024. Lecture 3.

1 Polynomials in modular arithmetic.

Proposition 1 (Proven last week in the class). Let

L(x) = c0 + c1x+ . . .+ cdx
d

be a polynomial of degree d with integer coefficients. Assume that for some integer a

L(a) = 0 mod n.

Then there exists a polynomial R(x) of degree d− 1 with integer coefficients such that

L(x) = (x− a)R(x) mod n

Theorem 1. Let n be a prime number and c0, . . . , cd be be integer numbers. Then the polynomial

L(x) = c0 + c1x+ . . .+ cdx
d mod n

cannot have more than d roots in {0, 1, . . . , n− 1} (unless all ci are equal to zero mod 0).

Proof. Assume that x1, x2, . . . , xd, xd+1 are roots of L(x), i.e., for all i

L(xi) = 0 mod n,

and xi 6= xj mod n for i 6 j. Since x1 is a root of L(x), we can apply Proposition 1 and conclude that

L(x) = (x− x1)L1(x) mod n

for some polynomial with integer coefficients L1(x) of degree less than d. For each j = 2, . . . , d + 1 we
have L(xj) = 0 mod n. Hence,

(xj − x1)L1(xj) mod n.

As xj − xi 6= 0 mod n and n is a prime number, we conclude that L1(xj) = 0 mod n. In other words,
x2, . . . , xd+1 are roots of L1(x).

Now we use the fact that x2 is a root of L1(x) and apply again apply Proposition 1. We conclude that

L1(x) = (x− x2)L2(x) mod n

for some polynomial with integer coefficients L2(x), and degree of L2(x) is at most d− 2. We observe that
x3, . . . , xd+1 are roots L2(x). By repeating this argument d times we conclude that

L(x) = (x− x1) · (x− x2) · . . . · (x− xd) · Ld(x) mod n,

where Ld(x) is a polynomial of degree zero (i.e., a constant). Thus, for some integer number a we have

L(x) = a(x− x1) · (x− x2) · . . . · (x− xd) mod n.
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Observe that a 6= 0 mod n unless all coefficients cj of L(x) are equal to zero modulo n. Now we substitute
xd+1 in L(x) and obtain

L(xd+1) = a(xd+1 − x1) · (xd+1 − x2) · . . . · (xd+1 − xd) mod n

As n is a prime number, a product of non-zero factor cannot result in the value 0 modulo n. We come to a
contradiction with the assumption that xd+1 is another root of L(x).

Theorem 2. Let n be a prime number, x0, . . . , xd be integer numbers (pairwise different modulo n) and let
y0, . . . , yd be any integer numbers. Then there exists a unique polynomial

L(x) = c0 + c1x+ . . .+ cdx
d

of degree at most d with coefficients ci ∈ {0, 1, . . . , n− 1} such that L(xi) = yi for i = 0, . . . , d− 1.

Proof. First, we prove the uniqueness. Assume that there exist two different polynomials of degree at most
d (with integer coefficients) L(x) and R(x) such that

L(xi) = R(xi) = yi, i = 0, . . . , d.

Then, the difference L(x)−R(x) is a polynomial of degree at most d with (d+ 1) roots x0, . . . , xd (in the
arithmetic modulo n). This contradicts Theorem 1.

Now we prove the existence of the required polynomial L(x). For each i = 0, . . . , d we denote

Li(x) = (x− x1) · (x− x2) · . . . · (x− xi−1) · (x− xi+1) · . . . · (x− xd)

(the polynomial defined as the product of all (x − xk) for all k except for i). Observe that Li(xk) = 0
mod n for all k 6= i and αi := Li(xi) 6= 0. We know that for a prime number n, for every integer αi 6= 0
mod n there exists another integer number βi such that αi · βi = 1 mod n. Let

L̂i(x) := βiLi(x).

So we have a family of polynomials with integer coefficients L̂i(x) that are equal to 1 at xi and equal to 0
in all other points xk (for k 6= i). (As usual, all computations are done modulo n.)

Now we can define the required polynomial L(x) as the sum

L(x) := y0 · L̂0(x) + y1 · L̂1(x) + . . .+ yd · L̂d(x).

We have obtained a polynomial fo degree at most d such that L(xi) = yi for all i.

2 Shamir secret sharing scheme

We continue the discussion fo secret sharing. We need to distribute a secret k among a group of m parties
(participants of the secret sharing scheme). Let us fix t (the threshold, an integer number between 1 and
n). We require that every group of at least t participants could get the secret and every groups of less than t
participants should not get any information about the secret

Let K be the space of all potential secrets. In this section K = Z/nZ for some prime number n. We
assume that the secret is chosen in K at random, with the uniform distribution. A secret sharing scheme is a
randomized algorithm (Dealer) that samples for each k ∈ K a probability distribution pk(s1, . . . , sm)

Prob(k)[S1 = s1, . . . , Sm = sm] = pk(s1, . . . , sm),

the distribution of random shares compatible with the key k. These distributions must respect the following
two conditions.
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(I) For every group of t participants {i1, . . . , it}, the random variables 〈Si1 , . . . , Sit〉 contain enough
information to reconstruct the secret key k. This means that for every vector of value (si1 , . . . , sit)
there can be only one secret k ∈ K such that

Prob(k)[Si1 = si1 , . . . , Sit = sit ] > 0.

(II) For every group of ` < t participants {i1, . . . , i`}, the random variables 〈Si1 , . . . , Si`〉 contain no
information on k. This means that for all k ∈ K the restrictions of the distribution

Prob(k)[S1 = s1, . . . , Sn = sn]

on the coordinates i1, . . . , i` are identical1.

Shamir’s scheme of secret sharing is defined as follows. First of all, we fix a prime number n (at must
be greater than the number of participantsm) and some integer numbers xi for i = 1, . . . ,m (these numbers
must be pairwise different modulo n); this information is public. To share a secret k, Dealer chooses at
random c1, . . . , ct−1 in Z/n(Z) and defines

L(x) = k + c1x+ . . . ct−1x
t.

Every i-th participants receives a private key yi := L(xi).

(I) Given t values yi1 , . . . , yit , one can apply Theorem 2 and reconstruct the polynomial L(x) such that

L(xi1) = yi1 mod n, . . . , L(xit) = yit mod n,

and compute the secret key k = L(0) mod n. Thus, every group of (at least) t participants can
compute the secret key.

(II) if only (t − 1) (or even less) values yi1 are known, than any value of k is compatible with the given
conditions

L(xis) = yis mod n.

Moreover, all values of k ∈ Z/nZ are equiprobable. Thus, every group of at most (t− 1) participants
holds no information on the secret key.

Observe that in Shamir’s scheme, for every participant the space of possible private key coincides with the
space of secret keys K = Z/nZ.

3 Secret sharing scheme for an arbitrary access structure

In the class we discussed a general definition of secret sharing for an arbitrary access structure. We showed
that for any access structure there exists a valid secret sharing scheme (though the general construction
suggests to the participants private keys that are much greater than the size of the secret key).

1In the construction that we discuss below, the joint distributions (Si1 , . . . , Si`) for non authorized groups are always the
uniform distributions of ` independent random variables, though the general definition admits more complicated constructions.
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4 Attack with a pair of predefined clear messages

Let Π = 〈Gen(),Enc(),Dec()〉 be an encryption scheme, whereM, E ,K are the spaces of clear messages,
encrypted messages, and secret key respectively. Let us consider the following game between an adversary
and Alice.

• Adversary uses an algorithm Adv1() that chooses two clear messages ma,mb ∈M;

• Alice chooses at random i ∈ {a, b} (with equal probabilities), samples a secret key k ← Gen(), and
computes the encrypted message e = Enc(mi, k);

• Adversary computes j ∈ {a, b} using another algorithm j ← Adv2(ma,mb, e).

The success of the adversary is defined as follows:

success =

{
1, if i = j,
0, otherwise.

In words: the adversary prepared a pair of messages ma,mb; Alice decides which message to encrypt; then
the adversary tries to understand which of the messages was encrypted.

Theorem 3. If Π = 〈Gen(),Enc(),Dec()〉 is a secure encryption scheme, then

Prob[success = 1] = 1/2.

In words: the adversary has no better strategy than simply toss a coin and suggest an answer at random

(We proved this theorem in the class.) In the next lecture we will adapt this attack to define security against
an adversary with bounded computational resources.

5 Practical algorithms and admissibly small errors

We say that an algorithm is computationally efficient (feasible) if it stops in time at most poly(n) for all
inputs of size n (for some polynomial poly(n)). This definition applies to deterministic and to randomized
algorithms. This definition defines the same class of algorithm for many popular models of computation,
such as Turing machines with one or many tapes, random-access machine, and many other models.

We say that a function f : N → R+ is negligible, if for any polynomial poly(n) (that is not identically
equal to zero) there is a natural number n0 such that for all n > n0 we have |f(n)| < 1/|poly(n)|. In words:
a negligible function goes to 0 faster than any inverted polynomial.

Exercise 1 (see also DM attached to this lecture).
(a) If f(n) and g(n) are negligible functions, then f(n) + g(n) and f(n) · g(n) are also negligible.
(b) If f(n) is negligible function and C is a real number, then C · f(n) is also a negligible number.
(c) The functions 1/ log n, 1/

√
n, 1/(n+ 5)2, 1/n10 are not negligible.

(d) The functions e−n, e−n/10, e−
√
logn, n− log logn are negligible.

In what follows we will discuss encryption scheme and protocols that are sucre against “realistic” ad-
versary. We usually believe that a scheme is practically secure, if attacks of any adversary which uses an
algorithm computable in polynomial time succeeds with a negligible probability. In the next lectures we will
see more precise forms of this definition.
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