
HAI709I : Fondements cryptographiques de la sécurité, Université de Montpellier, 2023

07/10/2024. Lecture 5.

1 Computational security: encryption schemes secure against and adver-
sary computable in polynomial time

In this section we discuss encryption schemes suitable for “realistic” settings. On a one hand, this makes
some requirements for the scheme even more restrictive: all operations performed by the sender and the
receiver (Alice and Bob) must be done efficiently. This means that the algorithm for encoding and decoding
must run in polynomial time. On the other hand, this makes the security restrictions imposed on the scheme
much weaker: the scheme need to remain secure only against adversaries computable in polynomial time.

Definition 1. A triple of algorithms Π = 〈Gen(),Enc(),Dec()〉 is called an encryption scheme computable
in polynomial time if for every n there are families of setsMn, En,Kn (which are the spaces of clear texts,
cyphertexts, and secret keys for the value of security parameter n), and

• Gen(11 . . . 1︸ ︷︷ ︸
n

) samples a key k ∈ Kn (a secret key used for messages of length n)

• Enc(m, k, 11 . . . 1︸ ︷︷ ︸
n

) applied to a clear messagem ∈Mn and a secret key k ∈ Kn returns an encrypted

message e ∈ En

• Dec(m, k, 11 . . . 1︸ ︷︷ ︸
n

) applied to an encrypted message e ∈ En and a secret key k ∈ Kn returns either

m ∈Mn such that Enc(m, k) = e or the symbol ⊥ (failure)

• each of the algorithms 〈Gen(),Enc(),Dec()〉 terminates in polynomial time

• for every m ∈Mn, for a randomly chosen k ← Gen(11 . . . 1︸ ︷︷ ︸
n

), the probability

Prob[Dec(Enc(m, k), k) = ⊥]

is a negligible function.

It is not so simple to say what it means that a scheme is secure against a restricted adversary. Unlike
the situation with an unlimitedly powerful adversary, we cannot require that the information revealed to
the adversary does not affect the conditional distribution on the set of potentially possible clear messages.
Instead we will use the definition based on the attack with a chosen pair of clear messages. We will see
later that this definition implies all properties of security that we may need in practice (see the discussion of
semantic security a few lectures later).

The basic attack (attack with a chosen pair of clear messages): Let Π = 〈Gen(),Enc(),Dec()〉 be an
encryption scheme, where M, E ,K are the spaces of clear messages, encrypted messages, and secret key
respectively. Let us consider the following game between an adversary and Alice.

• Adversary uses an algorithm Adv1(11 . . . 1︸ ︷︷ ︸
n

) that chooses two clear messages ma,mb ∈Mn;
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• Alice chooses at random i ∈ {a, b} (with equal probabilities), samples a secret key k ← Gen(11 . . . 1︸ ︷︷ ︸
n

),

and computes the encrypted message e = Enc(mi, k, 11 . . . 1︸ ︷︷ ︸
n

);

• Adversary computes j ∈ {a, b} using another algorithm j ← Adv2(e,ma,mb, 11 . . . 1︸ ︷︷ ︸
n

).

The success of the adversary is defined as follows:

success =

{
1, if i = j,
0, otherwise.

In words: the adversary prepares a pair of messages ma,mb; Alice decides which message to encrypt; then
the adversary tries to understand which of the two messages was encrypted.

Definition 2. An encryption scheme Π = 〈Gen(),Enc(),Dec()〉 is called secure against an adversary
computable in polynomial time, if for the game between Adversary and Alice following the protocol of the
attack with a pair of chosen clear messages (explained above) where the adversary’s algorithms Adv1 and
Adv2 are computable in polynomial time, the gap∣∣∣∣Prob[succes]− 1

2

∣∣∣∣
is a negligible function.

Remark 1. In practice we want to use encryption schemes that are at once computable in polynomial time
and secure against an adversary computable in polynomial time.

The attack with a pair of chosen clear messages might look a bit artificial. However, security against
this attack is an absolutely fundamental property. It implies security against many other natural types of
attacks. In the class we discussed several examples of such facts, see below.

Example 1: Attack on the first bit of the clear messages. Let Π = 〈Gen(),Enc(),Dec()〉 be an en-
cryption scheme, where M, E ,K are the spaces of clear messages, encrypted messages, and secret key
respectively. Let us assume thatM = {0, 1}n, and consider the following game between an adversary and
Alice.

• Alice chooses at random a clear message (m1 . . .mn) ∈ {0, 1}n (with the uniform distribution of
probabilities, i.e., each message is chosen with probability 1/2n), samples a secret key

k ← Gen(11 . . . 1︸ ︷︷ ︸
n

),

and computes the encrypted message e = Enc((m1 . . .mn), k, 11 . . . 1︸ ︷︷ ︸
n

)

• Adversary computes j ← Advexample1(e, 11 . . . 1︸ ︷︷ ︸
n

).
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The success of the adversary is defined as follows:

successexample1 =

{
1, if j = m1,
0, otherwise.

In words: Alice encrypts a randomly chosen message; Adversary intercepts the cyphertext and tries to guess
the value of the very first bit of the clear message.

Proposition 1. If a scheme Π = 〈Gen(),Enc(),Dec()〉 is secure against an adversary computable in
polynomial time (in the sense of Definition 2) then Π is secure against an attack on the first bits of the clear
message, i.e., for every adversary Adv computable in polynomial time∣∣∣∣Prob[successexample1 = 1]− 1

2

∣∣∣∣
is negligible.

Informal meaning of Proposition 1: if a scheme is secure against polynomial-time computable adver-
saries, then one cannot extract from an encrypted message any useful information on the 1st bit of the clear
text.

Proof. We want to prove

Π is secure in the sense of Definition 2 =⇒
∣∣∣∣Prob[successexample1 = 1]− 1

2

∣∣∣∣ is negligible

It is convenient to reformulate this implication in the counter-positive form:∣∣∣∣Prob[successexample1 = 1]− 1

2

∣∣∣∣ is non-negligible =⇒ Π is not secure in the sense of Definition 2

A bit more precisely, this means that if there exist an adversary that uses a polynomial time algorithm
Advexample1, and

Prob[successexample1 = 1] =
1

2
+ δn

for a non-negligible δn, then there exists a pair of polynomial time algorithms Adv1, Adv2 such that in the
game from Definition 2 the differnece ∣∣∣∣Prob[success = 1]− 1

2

∣∣∣∣
is also non-negligible. In fact, we will use Advexample1 to construct Adv1, Adv2 such that

Prob[success = 1] =
1

2
+ δn

(with exactly the same non-negligible δn). We do it as follows.
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• Adv1(11 . . . 1︸ ︷︷ ︸
n

) samples two clear messages ma,mb ∈Mn = {0, 1}n

ma = 0 ∗ ∗ . . . ∗︸ ︷︷ ︸
n−1

mb = 1 ∗ ∗ . . . ∗︸ ︷︷ ︸
n−1

such that the first bit of ma is 0 and the first bit of mb is 1 (the other bits of ma and mb denoted above
“∗” are chosen at random, uniformly and independently);

• Alice chooses at random i ∈ {a, b} (with equal probabilities), samples a secret key k ← Gen(11 . . . 1︸ ︷︷ ︸
n

),

and computes the encrypted message e = Enc(mi, k, 11 . . . 1︸ ︷︷ ︸
n

);

• Adv2(e,ma,mb, 11 . . . 1︸ ︷︷ ︸
n

) computes j ← Advexample1(e)

and then returns a in case j = 0 and returns b in case j = 1

Idea behind the construction: The machineAdvexample1 can distinguish between encrypted messages obtain
from clear messages 0 ∗ ∗ . . . ∗ and from clear messages 1 ∗ ∗ . . . ∗ ; we can apply this machine (without
even understanding how it works) to distinguish between Enc(ma, k, 1

n) and Enc(mb, k, 1
n), if the clear

texts ma and mb begin with 0 and 1 respectively.

Observe that we include Advexample1 in the construction of Adv2 as a “black box”. If Advexample1 runs
in polynomial time, then we can claim that Adv2 also runs in polynomial time. The algorithm Adv1 always
run in polynomial time, its construction is pretty simple.

We assumed that all digits in ma = 0 ∗ ∗ . . . ∗︸ ︷︷ ︸
n−1

and in mb = 1 ∗ ∗ . . . ∗︸ ︷︷ ︸
n−1

(except for the very first position)

are chosen at random, uniformly and independently. Hence, whenAdv1 samples thesema andmb, and then
Alice chooses i ∈ {a, b} at random, then the resulting string

mi = ∗ ∗ . . . ∗︸ ︷︷ ︸
n

is uniformly distributed on the whole set {0, 1}n. So, when we feed e = Enc(mi, k, 11 . . . 1︸ ︷︷ ︸
n

) intoAdvexample1,

we are in the setting of Example 1 (i.e., Advexample1 is applied to an encrypted messages obtained from a
randomly chosen clear message). Therefore, we may use the assumption that Advexample1(e) with proba-
bility 1

2 + δn correctly guesses the first bits of the clear message mi.
Further, the strings ma and mb are chosen so that they must differ at the first bit. Thus, the answer

returned by Advexample1(e) allows to understand which of the two messages (ma or mb) was encoded. And
this is exactly what Adv2 is doing!

It is not hard to see that the attack of (Adv1, Adv2) succeeds if and only if Advexample1(e) correctly
determines the first bit of the used clear message. Therefore, this attack succeeds with probability 1

2 + δn.
If δn is non-negligible, we conclude that Π is not secure, and the proposition is proven.
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Example 2: Attack on the XOR of the bits of the clear message. Let Π = 〈Gen(),Enc(),Dec()〉 be
an encryption scheme, whereM, E ,K are the spaces of clear messages, encrypted messages, and secret key
respectively. We assume again thatM = {0, 1}n and consider the following game between an adversary
and Alice.

• Alice chooses at random a clear message (m1 . . .mn) ∈ {0, 1}n (with the uniform distribution of
probabilities, i.e., each message is chosen with probability 1/2n), samples a secret key

k ← Gen(11 . . . 1︸ ︷︷ ︸
n

),

and computes the encrypted message e = Enc((m1 . . .mn), k, 11 . . . 1︸ ︷︷ ︸
n

)

• Adversary computes j ← Advexample2(e, 11 . . . 1︸ ︷︷ ︸
n

).

The success of the adversary is defined as follows:

successexample2 =

{
1, if j = m1 ⊕m2 ⊕ . . .⊕mn,
0, otherwise.

In words: Alice encrypts a randomly chosen message; Adversary intercepts the cyphertext and tries to guess
the XOR of all bits of the clear message.

Proposition 2. If a scheme Π = 〈Gen(),Enc(),Dec()〉 is secure against an adversary computable in
polynomial time (in the sense of Definition 2) then Π is secure against an attack on the XOR of the bits of
the clear message, i.e., for every adversary Adv computable in polynomial time∣∣∣∣Prob[successexample2 = 1]− 1

2

∣∣∣∣
is negligible.

Informal meaning of Proposition 2: if a scheme is secure in the sense of Definition 2, then one cannot
extract from an encrypted message any useful information on the XOR of all bits of the clear text.
Proof of Proposition 2 is similar to the proof of Proposition 1. The key idea: the adversary should sample
two random clear messages ma and mb with different parity of their bits.

Example 3: Attack on the value of the 50th bit of the clear message given as a side information the
values of the first 49 bits of the clear message. Let Π = 〈Gen(),Enc(),Dec()〉 be an encryption scheme,
where M, E ,K are the spaces of clear messages, encrypted messages, and secret key respectively and let
M = {0, 1}n. We consider the following game between an adversary and Alice.

• Alice chooses at random a clear message (m1 . . .mn) ∈ {0, 1}n (with the uniform distribution of
probabilities, i.e., each message is chosen with probability 1/2n), samples a secret key

k ← Gen(11 . . . 1︸ ︷︷ ︸
n

),

and computes the encrypted message e = Enc((m1 . . .mn), k, 11 . . . 1︸ ︷︷ ︸
n

)
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• Adversary computes j ← Advexample3(e,m1,m2, . . . ,m49, 11 . . . 1︸ ︷︷ ︸
n

).

The success of the adversary is defined as follows:

successexample3 =

{
1, if j = m50,
0, otherwise.

In words: Alice encrypts a randomly chosen message; Adversary intercepts the cyphertext and gets in
addition the values of the first 49 bits of the clear text; given all this information, Adversary tries to guess
the 50th bits of the clear message.

Proposition 3. If a scheme Π = 〈Gen(),Enc(),Dec()〉 is secure against an adversary computable in
polynomial time (in the sense of Definition 2) then Π is secure against an attack on the value of the 50th bit
of the clear message given as a side information the values of the first 49 bits of the clear message, i.e., for
every adversary Adv computable in polynomial time∣∣∣∣Prob[successexample3 = 1]− 1

2

∣∣∣∣
is negligible.

Informal meaning of Proposition 3: if a scheme is secure in the sense of Definition 2, then one cannot
extract from an encrypted message any useful information on the 50th bit of the clear text even if we get an
access to the first 49 bits of the clear text.

Proof of Proposition 3 is similar to the proof of Proposition 1 and Proposition 2. The key idea: the adversary
samples to clear messages ma and mb that agree at the first 49 positions and differ in the 50th position.

2 Pseudo-random generators and computationally secure schemes

Reminder:

Definition 3. A function
G : {0, 1}`(n) → {0, 1}n

is called a pseudo-random generator if

• `(n) < n

• G(x) is computed (by a deterministic algorithm) in polynomial time

• for every poly-time algorithm TEST (deterministic or randomised) the difference∣∣∣Probx∈R{0,1}`(n) [TEST(G(x)) = 1]− Proby∈R{0,1}n [TEST(y) = 1]
∣∣∣

is negligibly small.

Theorem 1. We fix Gn : {0, 1}`(n) → {0, 1}n and define an encryption scheme Π = 〈Gen,Enc,Dec〉 as
follows. We letMn = En = {0, 1}n (the spaces of clear texts and cyphertexts), and Kn = {0, 1}`(n) (the
space of secret keys), and assume that
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• the algorithm Gen(11 . . . 1︸ ︷︷ ︸
n

) takes a random k ∈ {0, 1}`(n)

• the algorithm Enc(m, k) computes a bitwise XOR of the open message m and k′ = Gn(k)

• the algorithm Dec(e, k) computes a bitwise XOR of the encrypted message e and the key k′ = Gn(k)

If Gn is a pseudo-random generator then this scheme Π is secure against any adversary computable in
polynomial time.

Remark 2. This scheme allows to use secret keys that are much shorter than the clear messages. Such
a scheme is interesting if `(n) � n, e.g., `(n) = 10

√
n. We know that if the secret keys are shorter

than the clear messages, then a scheme cannot be absolutely secure (against an adversary with unbounded
computational resources). However, Theorem 1 guarantees that we can make secret keys much shorter
without loosing security against the adversaries computable in polynomial time.

We will finish the proof of this theorem in the next lecture.
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