
HAI709I : Fondements cryptographiques de la sécurité, Université de Montpellier, 2023

14/10/2024. Lecture 6.

1 Pseudo-random generators: several simple properties.

Reminder 1:

Definition 1. A family of functions

Gn : {0, 1}`(n) → {0, 1}n

is called a pseudo-random generator if

• `(n) < n

• Gn(x) is computed (by a deterministic algorithm) in time poly(n)

• for every poly-time algorithm TEST (deterministic or randomised) the difference∣∣∣Probx∈R{0,1}`(n) [TEST(Gn(x)) = 1]− Proby∈R{0,1}n [TEST(y) = 1]
∣∣∣

is negligibly small.

In the class we discussed several simple properties that follow from the definition of a pseudo-random
generator.

Example 1. If a function
Gn : {0, 1}`(n) → {0, 1}n

is defined so that for every x ∈ {0, 1}`(n) the first bit of the value y = Gn(x) is equal to 1, then Gn is not a
pseudo-random generator.

Proof. Let us define

TEST1(y) =

{
1, if the first bits of y is equal to 1,
0, otherwise.

Obviously, TEST1() is computable in polynomial time. Moreover, for every x ∈ {0, 1}`(n) we have
TEST1(Gn(x)) = 1. Hence,

Probx∈R{0,1}`(n) [TEST1(Gn(x)) = 1] = 1.

On the other hand, for a random y ∈ {0, 1}n, only in the half of all possible cases the first bit of y is equal
to 1. Therefore,

Proby∈R{0,1}n [TEST1(y) = 1] =
1

2
.

Thus, ∣∣∣Probx∈R{0,1}`(n) [TEST1(Gn(x)) = 1]− Proby∈R{0,1}n [TEST1(y) = 1]
∣∣∣ =

1

2
,

which is not negligible. This contradicts the definition of a pseudo-random generator.

1



Example 2. If a function
Gn : {0, 1}`(n) → {0, 1}n

is defined so that for every x ∈ {0, 1}`(n) the string y = Gn(x) is a palindrome, then Gn is not a pseudo-
random generator.

Proof. The argument is similar to Example 1. It is enough to define the test

TEST2(y) =

{
1, y is a palindrome,
0, otherwise,

and plug it into the definition of a pseudo-random generator. We omit the details.

Example 3. Let
Gn : {0, 1}`(n) → {0, 1}n

be a family of functions and let InImage() be the predicate defined as follows: for every y ∈ {0, 1}n

InImage(y) =

{
1, if there is an x ∈ {0, 1}`(n) such that Gn(x) = y,
0, otherwise

In the class we proved that if InImage() is computable in polynomial time, then Gn is a not a pseudo-
random generator (we omit the details). Using this fact we also showed that Gn cannot be a pseudo-random
generator if `(n) = log2 n (if `(n) is so small, we can tun through all x ∈ {0, 1}`(n) in polynomial time, so
InImage() is efficiently computable).

2 From a pseudo-random generator to an encryption scheme secure against
and adversary computable in polynomial time

Reminder 2: the Vernam encryption scheme. ΠVernam = 〈Gen,Enc,Dec〉 is defined as follows. We
defineM = E = K = {0, 1}n (the spaces of clear texts, cyphertexts, and the secret keys), and let

• the algorithm Gen() take a random k ∈ {0, 1}`(n)

• the algorithm Enc(m, k) compute a bitwise XOR of the clear message m and k

• the algorithm Dec(e, k) compute a bitwise XOR of the encrypted message e and k

This scheme is (absolutely!) secure. In particular, it is secure against any adversary computable in polyno-
mial time1. The only disadvantage of the Vernam scheme is the large size of the secret key.

1This claim sound as a trivial observation: absolute security implies security against bounded adversary. However, speaking
formally, the definitions of absolute security and security against bounded adversary are very different, and the relation between
these definitions is not so obvious. However, in Lecture 3 we proved that the definition of absolute security implies indeed the
definition of security against adversary computable in polynomial time.

2



Remainder 3: an attack with a chosen pair of clear messages. Let Π = 〈Gen(),Enc(),Dec()〉 be an
encryption scheme, where M, E ,K are the spaces of clear messages, encrypted messages, and secret key
respectively. Let us consider the following game between an adversary and Alice.

• Adversary uses an algorithm Adv1(11 . . . 1︸ ︷︷ ︸
n

) that chooses two clear messages ma,mb ∈Mn;

• Alice chooses at random i ∈ {a, b} (with equal probabilities), samples a secret key k ← Gen(11 . . . 1︸ ︷︷ ︸
n

),

and computes the encrypted message e = Enc(mi, k, 11 . . . 1︸ ︷︷ ︸
n

);

• Adversary computes j ∈ {a, b} using another algorithm j ← Adv2(e,ma,mb, 11 . . . 1︸ ︷︷ ︸
n

).

The success of the adversary is defined as follows:

success =

{
1, if i = j,
0, otherwise.

In words: the adversary prepares a pair of messages ma,mb; Alice decides which message to encrypt; then
the adversary tries to understand which of the two messages was encrypted.

Definition 2. An encryption scheme Π = 〈Gen(),Enc(),Dec()〉 is called secure against an adversary
computable in polynomial time, if for the game between Adversary and Alice following the protocol of the
attack with a pair of chosen clear messages (explained above) where the adversary’s algorithms Adv1 and
Adv2 are computable in polynomial time, the gap∣∣∣∣Prob[succes]− 1

2

∣∣∣∣
is a negligible function.

The main result of the section: We proved earlier that an encryption scheme cannot be secure against an
adversary with unbounded computational resources if the secret keys are shorter than the clear messages.
However, we show below that we can make secret keys much shorter than the clear messages and maintain
the property of security against the adversaries computable in polynomial time.

Theorem 1. We fix Gn : {0, 1}`(n) → {0, 1}n and define an encryption scheme Π = 〈Gen,Enc,Dec〉 as
follows. We letMn = En = {0, 1}n (the spaces of clear texts and cyphertexts), and Kn = {0, 1}`(n) (the
space of secret keys), and assume that

• the algorithm Gen(11 . . . 1︸ ︷︷ ︸
n

) samples a random k ∈ {0, 1}`(n)

• the algorithm Enc(m, k) computes a bitwise XOR of the clear message m and k′ = Gn(k)

• the algorithm Dec(e, k) computes a bitwise XOR of the encrypted message e and k′ = Gn(k)

If Gn is a pseudo-random generator (PRG), then this scheme Π is secure against any adversary computable
in polynomial time.

3



Proof. We need to prove that

Gn is a PRG =⇒ 〈Gen,Enc,Dec〉 is secure against any adversary computable in polynomial time.

It is helpful to rephrase this property in a counter-positive form:

〈Gen,Enc,Dec〉 is not secure against any adversary computable in polynomial time =⇒ Gn is not a PRG.

Let us prove this implication. The conditions

〈Gen,Enc,Dec〉 is not secure against any adversary computable in polynomial time

means that there exist algorithms Adv1 and Adv2, both converging in polynomial time, such that in the
attack



• Adv1(11 . . . 1︸ ︷︷ ︸
n

) produces ma,mb ∈ {0, 1}n;

• Alice chooses at random i ∈ {a, b} (with equal probabilities), samples a secret key k ∈ {0, 1}`(n),
and computes the encrypted message e = mi ⊕Gn(k);

• Adv2(e,ma,mb) produces j

the probability of success is Prob[j = i] = 1
2 + δn, where δn is some non-negligible function (e.g., δn can

be a positive constant, or 1/ log n, or 1/n2, but δn cannot be equal to 1/2n).
Since k andma,mb are sampled independently, we can rephrase this process as follows: we sample first

a random x ∈ {0, 1}`(n), define y = Gn(x), and run the procedure

TEST(y)



• Adv1 produces ma,mb ∈ {0, 1}n;

• Alice chooses at random i ∈ {a, b} (with equal probabilities),
and computes the encrypted message e = mi ⊕ y;

• Adv2(e,ma,mb) produces j

• return 1 if j = i; return 0 otherwise

which return 1 with probability 1
2 + δn for some non-negligible function δn. In other words,

Probx∈{0,1}`(n) [TEST(Gn(x)) = 1] =
1

2
+ δn

We claim that this TEST() can be used to “discredit” the generatorGn. Indeed, we constructed is so that
it is computable in polynomial time. Further, if we sample a truly random y ∈ {0, 1}n and run TEST(y),
we actually simulate the attack with two clear messages against the classical Vernam scheme ΠVernam (with
a random key y whose length is equal to the length of the clear message). Due to Theorem 3 from Lecture 3
we know that in such an attack the probability of success is always exactly 1

2 , as if the adversary just tosses
a coin to produce the final answer. Thus,

Probx∈{0,1}`(n) [TEST(Gn(x)) = 1]− Proby∈{0,1}n [TEST(Gn(x)) = 1] =

(
1

2
+ δn

)
− 1

2
= δn.

As δn is non-negligible, we arrive to a contradiction with the definition of a pseudo-random generator.

4



3 Zero knowledge proof with physical gadgets

In the class we discussed a protocol of zero knowledge proof for the problem of 3-colorability of a graph
and its cryptographic interpretation: Prover can convince Verifier that Prover knows a “secret password”
(3-coloring of the given graph) without divulging any information on this coloring. We discussed a protocol
that uses physical gadgets: caps that hid colors assigned to the vertices. Later we will discuss an “electronic”
version of this protocol, with a possibility to perform a zero knowledge proof online (without physical cups).

References

[1] J. Katz, Y. Lindell. Introduction to modern cryptography, CRC Press, 2021

[2] B. Martin. Codage, cryptologie et applications. PPUR presses polytechniques, 2004

5


	Pseudo-random generators: several simple properties.
	From a pseudo-random generator to an encryption scheme secure against and adversary computable in polynomial time
	Zero knowledge proof with physical gadgets

