UM. Autumn 2020. Homework 4 to the course «Information theory»
[recommended to return by octobre 6]
Problem 1. Construct an optimal prefix code for the probability distribution

$$
(0.33,0.32,0.2,0.1,0.5)
$$

What is the average length of a codeword of this code (for the given distribution)? Hint: Use Huffman's construction of an optimal code.
Problem 2. In Lecture 3 (on September 22) we discussed a construction of a prefix code for a distribution of probabilities $\left(p_{1}, \ldots, p_{k}\right)$ with codewords of length $\left\lceil\log \frac{1}{p_{i}}\right\rceil$, $i=1, \ldots, k$. Find an example of a distribution for which this construction gives a code that is not optimal. Hint: Compair this code with Huffman's code, which is known to be optimal.

Problem 3. (a) Prove that

$$
1+\sqrt{2}+\sqrt{3}+\ldots+\sqrt{n}=a n \sqrt{n}+b \sqrt{n}+O(1)
$$

for some constant a, b (that do not depend on n).
(b) Find the values of a and b in this forumal.
(c) Find and prove a similar formula for the sum

$$
1+\sqrt[3]{2}+\sqrt[3]{3}+\ldots+\sqrt[3]{n}
$$

Hint: Use the ideas from the proof of the simplified Stirling formula proven in class.

