UM. Autumn 2020. Homework to the course «Information theory». [should be returned by Dec 15 to be counted in *contrôle continu*]

Problem 1. Prove that for any triple of jointly distributed random variables (α, β, γ)

$$I(\alpha:\beta) \le I(\alpha:\langle\beta,\gamma\rangle).$$

Problem 2. (a) Find an example of a joint distribution (α, β, γ) such that

$$I(\alpha : \beta) < I(\alpha : \beta | \gamma).$$

(b) Find an example of a joint distribution (α, β, γ) such that

$$I(\alpha:\beta) > I(\alpha:\beta|\gamma).$$

Problem 3. (a) Prove that for any triple of jointly distributed random variables (α, β, γ)

$$H(\gamma) \le H(\gamma|\alpha) + H(\gamma|\beta) + I(\alpha:\beta).$$

(b) Assume that there are (deterministic) functions F and G such that with probability one $\gamma = F(\alpha) = G(\beta)$. Prove that $H(\gamma) \leq I(\alpha : \beta)$.

Problem 4. Let S be a finite set in \mathbb{Z}^3 . We denote by $\pi_{ij}[S]$ the projection of S onto the coordinates i and j (e.g., π_{13} applied to the point (x, y, z) gives (x, z)). The cardinality of a set is denoted $|\cdot|$.

(a) Prove that $2 \cdot \log |S| \leq \log |\pi_{12}[S]| + \log |\pi_{13}[S]| + \log |\pi_{23}[S]|$. Hint : Introduce a uniform distribution $(\alpha_1, \alpha_2, \alpha_3)$ on the elements of S and use the inequality

$$2H(\alpha_1, \alpha_2, \alpha_3) \leq H(\alpha_1, \alpha_2) + H(\alpha_1, \alpha_2) + H(\alpha_2, \alpha_2). /* \text{ a misprint } *_{/}$$

 $2H(\alpha_1, \alpha_2, \alpha_3) \le H(\alpha_1, \alpha_2) + H(\alpha_1, \alpha_3) + H(\alpha_2, \alpha_3).$

(b) Prove that $|S|^2 \leq |\pi_{12}[S]| \cdot |\pi_{13}[S]| \cdot |\pi_{23}[S]|$.

Problem 5. Let $\mathbf{m} = (m_1 \dots m_n)$ be an arbitrary random variable distributed in $\{0,1\}^n$ and $\mathbf{k} = (k_1 \dots k_n)$ be a *uniform* distribution on the same domain $\{0,1\}^n$. Assume that \mathbf{m} and \mathbf{k} are independent.

Denote by **e** the bitwise XOR of **m** and **k** (i.e., $e_i = m_i \oplus k_i$ for i = 1, ..., n). Prove that

$$I(\mathbf{m}:\mathbf{e})=0.$$

Hint : First of all, prove that $H(\mathbf{e}) \leq n$. Then draw a diagram with information quantities for the triple $(\mathbf{m}, \mathbf{k}, \mathbf{e})$ and focus on the mutual information between \mathbf{m} and \mathbf{e} .