UM. Autumn 2020. Homework to the course «Information theory». [should be returned by Dec 15 to be counted in contrôle continu]

Problem 1. Prove that for any triple of jointly distributed random variables (α, β, γ)

$$
I(\alpha: \beta) \leq I(\alpha:\langle\beta, \gamma\rangle)
$$

Problem 2. (a) Find an example of a joint distribution (α, β, γ) such that

$$
I(\alpha: \beta)<I(\alpha: \beta \mid \gamma)
$$

(b) Find an example of a joint distribution (α, β, γ) such that

$$
I(\alpha: \beta)>I(\alpha: \beta \mid \gamma)
$$

Problem 3. (a) Prove that for any triple of jointly distributed random variables (α, β, γ)

$$
H(\gamma) \leq H(\gamma \mid \alpha)+H(\gamma \mid \beta)+I(\alpha: \beta)
$$

(b) Assume that there are (deterministic) functions F and G such that with probability one $\gamma=F(\alpha)=G(\beta)$. Prove that $H(\gamma) \leq I(\alpha: \beta)$.

Problem 4. Let S be a finite set in \mathbb{Z}^{3}. We denote by $\pi_{i j}[S]$ the projection of S onto the coordinates i and j (e.g., π_{13} applied to the point (x, y, z) gives $(x, z))$. The cardinality of a set is denoted $|\cdot|$.
(a) Prove that $2 \cdot \log |S| \leq \log \left|\pi_{12}[S]\right|+\log \left|\pi_{13}[S]\right|+\log \left|\pi_{23}[S]\right|$.

Hint : Introduce a uniform distribution $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ on the elements of S and use the inequality

$$
\begin{aligned}
& 2 H\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \leq H\left(\alpha_{1}, \alpha_{2}\right)+H\left(\alpha_{1}, \alpha_{2}\right)+H\left(\alpha_{2}, \alpha_{2}\right) \cdot / * \text { a misprint */ } \\
& 2 H\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \leq H\left(\alpha_{1}, \alpha_{2}\right)+H\left(\alpha_{1}, \alpha_{3}\right)+H\left(\alpha_{2}, \alpha_{3}\right) .
\end{aligned}
$$

(b) Prove that $|S|^{2} \leq\left|\pi_{12}[S]\right| \cdot\left|\pi_{13}[S]\right| \cdot\left|\pi_{23}[S]\right|$.

Problem 5. Let $\mathbf{m}=\left(m_{1} \ldots m_{n}\right)$ be an arbitrary random variable distributed in $\{0,1\}^{n}$ and $\mathbf{k}=\left(k_{1} \ldots k_{n}\right)$ be a uniform distribution on the same domain $\{0,1\}^{n}$. Assume that \mathbf{m} and \mathbf{k} are independent.

Denote by \mathbf{e} the bitwise XOR of \mathbf{m} and \mathbf{k} (i.e., $e_{i}=m_{i} \oplus k_{i}$ for $i=1, \ldots, n$). Prove that

$$
I(\mathbf{m}: \mathbf{e})=0
$$

Hint : First of all, prove that $H(\mathbf{e}) \leq n$. Then draw a diagram with information quantities for the triple ($\mathbf{m}, \mathbf{k}, \mathbf{e}$) and focus on the mutual information between \mathbf{m} and \mathbf{e}.

