UM. Autumn 2020. Homework to the course «Information theory» (not counted in contrôle continu).
[should be returned by Dec 22 to be corrected]
Problem 1. Assume that we have a joint distribution of random variables $\left(S_{0}, S_{1}, S_{2}, S_{3}\right)$ such that

$$
\left\{\begin{array}{l}
H\left(S_{0} \mid S_{1}, S_{2}\right)=H\left(S_{0}\right) \\
H\left(S_{0} \mid S_{1}, S_{2}, S_{3}\right)=0
\end{array}\right.
$$

Prove that $H\left(S_{3}\right) \geq H\left(S_{0}\right)$.
(In some sense, this exercise explains that the secret sharing scheme discussed in the class cannot be improved : we cannot make the entropies of the "shares" smaller than the size of the secret S_{0}.)

Problem 2. (a) Prove that there exists a constant d_{1} such that for all $x, y \in$ $\{0,1\}^{*}$

$$
C(x \mid y) \leq C(x)+d_{1} .
$$

(b) Prove that there exists a constant d_{2} such that for all $x \in\{0,1\}^{*}$

$$
C(x \mid x) \leq d_{2}
$$

Problem 3. (a) Prove that for every computable function f there exists a constant d_{f} such that

$$
C(f(x)) \leq C(x)+d_{f}
$$

(b) Prove that for every computable function g there exists a constant d_{g} such that

$$
C(g(x) \mid x) \leq d_{g}
$$

Problem 4. A word $x \in\{0,1\}^{n}$ is a palindrome if x reads the same backward as forward, such as, for example, 11, 00100, 101101. Prove that there exists a constant d such that $C(x) \leq|x| / 2+d$.

Problem 5. In what follows $x y$ denotes the concatenation of x and y.
(a) Prove that there exists a constant d_{1} such that for all $x, y \in\{0,1\}^{*}$

$$
C(x y) \leq 2 C(x)+C(y)+d_{1} .
$$

(b) Prove that there exists a constant d_{2} such that for all $x, y \in\{0,1\}^{*}$

$$
C(x y) \leq C(x)+C(y)+2 \log C(x)+d_{2} .
$$

(c) Prove that there exists a constant d_{3} such that for all $x, y \in\{0,1\}^{*}$

$$
C(x y) \leq C(x)+C(y)+\log C(x)+\log \log C(x)+2 \log \log \log C(x)+d_{3} .
$$

(d) Prove that there exists a constant d_{4} such that for all $x, y \in\{0,1\}^{*}$

$$
C(x y) \leq C(x)+C(y \mid x)+\log C(x)+\log \log C(x)+2 \log \log \log C(x)+d_{4} .
$$

Problem 6. (a) Prove that for all n, d there are less than 2^{n-d} strings $x \in$ $\{0,1\}^{n}$ such that $C(x)<n-d$.
(b) Prove that there exists a constant d such that for every n, for at least $99,9 \%$ of $x \in\{0,1\}^{n}$

$$
n-d \leq C(x) \leq n+d
$$

Problem 7 (optional). (a) Prove that for all real numbers a, b

$$
a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\ldots+b^{n-1}\right)
$$

(b) Let $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$ be a polynomial of degree n. Let x_{0} be a root of this polynomial, i.e., $P\left(x_{0}\right)=0$. Prove that there exists a polynomial $Q(x)$ such that $P(x)=\left(x-x_{0}\right) Q(x)$.
Hint : observe that

$$
\begin{aligned}
P(x) & =P(x)-0=P(x)-P\left(x_{0}\right) \\
& =a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}-\left(a_{0}+a_{1} x_{0}+a_{2} x^{2}+\ldots+a_{n} x_{0}^{n}\right) \\
& =\left(a_{0}-a_{0}\right)+a_{1}\left(x-x_{0}\right)+a_{2}\left(x^{2}-x_{0}^{2}\right)+\ldots+a_{n}\left(x^{n}-x_{0}^{n}\right)
\end{aligned}
$$

and use (a).
(c) Let $P(x)=\left(x-x_{1}\right) Q(x)$ be a polynomial, and let $x_{2}\left(x_{2} \neq x_{1}\right)$ be another root of $P(x)$. Prove that x_{2} is also a root of $Q(x)$.
(d) Let $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$ be a polynomial of degree n. Let x_{1}, \ldots, x_{n} be (pairwise different) roots of this polynomial. Prove that

$$
P(x)=a_{n}\left(x-x_{0}\right) \cdot\left(x-x_{1}\right) \cdot \ldots \cdot\left(x-x_{n}\right)
$$

(e) Prove that a polynomial of degree n cannot have more than n pairwise different real roots.
(f) Let p be a prime number and $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$ be a polynomial of degree n with integer coefficients (and a_{n} is not divisible by p). Prove that there exist at most n pairwise different numbers $x_{i} \in\{0,1, \ldots, p-1\}$ such that

$$
P\left(x_{i}\right)=0 \quad \bmod p
$$

Hint : Reformulate and prove (a)-(d) in the arithmetic modulo p.
(g) Find a polynomial $P(x)$ of degree 2 with integer coefficients that has exactly three different roots modulo 6 (i.e., there are three pairwise different numbers x_{1}, x_{2}, x_{3} in $\{0,1, \ldots, 5\}$ such that $P\left(x_{i}\right)=0 \bmod 6$ for $\left.i=1,2,3\right)$.

