UM. Autumn 2020. Supplementary exercise to the course «Information theory».

Problem 1. We say that a binary string x contains only isolated zeros if x contains no factors 00 (two consecutive zeros). For example, the string 111010101 contains only isolated zeros, while 0010001 contains factors 00. Prove that there exist real numbers $\lambda_1 < 1$ and $\lambda_2 > 0$ such that for all binary strings x with only isolated zeros

$$C(x) \le \lambda_1 |x| + \lambda_2$$

(since $\lambda_1 < 1$, this mean that all long enough x with only isolated zeros are compressible, i.e., C(x) < |x|).

Problem 2. We say that a binary string x is incompressible if $C(x) \ge |x|$. (i) Prove that there exist infinitely many incompressible strings x.

(ii) Prove that all long enough incompressible strings x contain the factors "000", "0101", and "01011001."

Problem 3. Prove that there exist infinitely many binary strings x such that

$$0.49|x| < C(x) < 0.51|x|.$$

Problem 4. Let \bar{x} be a string obtained from x by inverting all bits (e.g., $\overline{00101} = 11010$).

(i) Prove that there is a constant d_1 such that for all strings x

$$|C(x) - C(\bar{x})| \le d_1$$

(ii) Prove that there is a constant d_2 such that for all strings x

$$|C(x\bar{x}) - C(x)| \le d_2$$

 $(x\bar{x} \text{ is a concatenation of } x \text{ and } \bar{x}).$

Problem 5. Prove that there exist infinitely many binary strings x with extremely small Kolmogorov complexity :

$$C(x) \le \underbrace{\log \log \log \ldots \log}_{100} |x|$$

Problem 6. Prove that there exist constants d_1, d_2 such that for all binary strings x

 $C(x) - d_1 \le C(xx) \le C(x) + d_2$

(here xx is the string x repeated twice).

Problem 7. Prove that there exist constants d_1, d_2 such that for every binary strings x with *exactly* n/2 zeros and n/2 ones we have

$$C(x) \le n - d_1 \log n + d_2.$$

(This means that the strings x with exactly balanced number of zeros and ones are compressible. So in a "truly random" strings the fractions of ones and zeros should slightly deviate from 50%.)

Hint: count the number of "balanced" strings of length n and use Stirling's approximation for the factorial.

Problem 8. Prove that there exist constants d_1, d_2, d_3 such that for all binary strings x, y

- (i) $I(x:y) \le C(x) + d_1 \log C(x) + d_2$,
- (ii) $I(x:x) \ge C(x) d_3$.

Problem 9. Prove that there exist real numbers d_1, d_2 such that all binary strings x, y

$$I(xxx:yyy) \le I(x:y) + d_1 \log(C(x) + C(y)) + d_2$$

(here xxx is the string x repeated three times).

Problem 10. Prove that the sum of $2^{-C(x)}$ over all binary strings x diverges, i.e.,

$$\sum_{x \in \{0,1\}^*} 2^{-C(x)} = \infty.$$