UM. Autumn 2020.

Supplementary exercise to the course «Information theory».

Problem 1. We say that a binary string x contains only isolated zeros if x contains no factors 00 (two consecutive zeros). For example, the string 111010101 contains only isolated zeros, while 0010001 contains factors 00 . Prove that there exist real numbers $\lambda_{1}<1$ and $\lambda_{2}>0$ such that for all binary strings x with only isolated zeros

$$
C(x) \leq \lambda_{1}|x|+\lambda_{2}
$$

(since $\lambda_{1}<1$, this mean that all long enough x with only isolated zeros are compressible, i.e., $C(x)<|x|)$.

Problem 2. We say that a binary string x is incompressible if $C(x) \geq|x|$.
(i) Prove that there exist infinitely many incompressible strings x.
(ii) Prove that all long enough incompressible strings x contain the factors " 000 ", "0101", and "01011001."

Problem 3. Prove that there exist infinitely many binary strings x such that

$$
0.49|x|<C(x)<0.51|x|
$$

Problem 4. Let \bar{x} be a string obtained from x by inverting all bits (e.g., $\overline{00101}=11010$).
(i) Prove that there is a constant d_{1} such that for all strings x

$$
|C(x)-C(\bar{x})| \leq d_{1} .
$$

(ii) Prove that there is a constant d_{2} such that for all strings x

$$
|C(x \bar{x})-C(x)| \leq d_{2}
$$

($x \bar{x}$ is a concatenation of x and \bar{x}).
Problem 5. Prove that there exist infinitely many binary strings x with extremely small Kolmogorov complexity :

$$
C(x) \leq \underbrace{\log \log \log \ldots \log }_{100}|x|
$$

Problem 6. Prove that there exist constants d_{1}, d_{2} such that for all binary strings x

$$
C(x)-d_{1} \leq C(x x) \leq C(x)+d_{2}
$$

(here $x x$ is the string x repeated twice).
Problem 7. Prove that there exist constants d_{1}, d_{2} such that for every binary strings x with exactly $n / 2$ zeros and $n / 2$ ones we have

$$
C(x) \leq n-d_{1} \log n+d_{2} .
$$

(This means that the strings x with exactly balanced number of zeros and ones are compressible. So in a "truly random" strings the fractions of ones and zeros should slightly deviate from 50%.)
Hint : count the number of "balanced" strings of length n and use Stirling's approximation for the factorial.

Problem 8. Prove that there exist constants d_{1}, d_{2}, d_{3} such that for all binary strings x, y
(i) $I(x: y) \leq C(x)+d_{1} \log C(x)+d_{2}$,
(ii) $I(x: x) \geq C(x)-d_{3}$.

Problem 9. Prove that there exist real numbers d_{1}, d_{2} such that all binary strings x, y

$$
I(x x x: y y y) \leq I(x: y)+d_{1} \log (C(x)+C(y))+d_{2}
$$

(here $x x x$ is the string x repeated three times).
Problem 10. Prove that the sum of $2^{-C(x)}$ over all binary strings x diverges, i.e.,

$$
\sum_{x \in\{0,1\}^{*}} 2^{-C(x)}=\infty
$$

