
.

......
Random number generator: testing and whitening

Andrei Romashchenko & Alexander Shen
ESCAPE / LIRMM

invitation to an internship (2020)

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 1 / 12

What is a random sequence of digits?

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 2 / 12

00

01

1101111011100001101101010110001111101010

1100100100001111110110101010001000100001

Can you guess which sequence here is truly random?
(Yes, to prepare one of these sequences we tossed a real coin 40 times.)

In some sense, all 40-bit sequences are equally random
(they all have the same probability 2−40 in a fair coin model),
but some look more random than others.

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 3 / 12

00

01

1101111011100001101101010110001111101010

1100100100001111110110101010001000100001

Can you guess which sequence here is truly random?
(Yes, to prepare one of these sequences we tossed a real coin 40 times.)

In some sense, all 40-bit sequences are equally random
(they all have the same probability 2−40 in a fair coin model),
but some look more random than others.

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 3 / 12

00

01

1101111011100001101101010110001111101010

1100100100001111110110101010001000100001

Can you guess which sequence here is truly random?
(Yes, to prepare one of these sequences we tossed a real coin 40 times.)

In some sense, all 40-bit sequences are equally random
(they all have the same probability 2−40 in a fair coin model),
but some look more random than others.

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 3 / 12

00

01

1101111011100001101101010110001111101010

1100100100001111110110101010001000100001

Can you guess which sequence here is truly random?
(Yes, to prepare one of these sequences we tossed a real coin 40 times.)

In some sense, all 40-bit sequences are equally random
(they all have the same probability 2−40 in a fair coin model),
but some look more random than others.

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 3 / 12

00

01

1101111011100001101101010110001111101010

1100100100001111110110101010001000100001

Can you guess which sequence here is truly random?
(Yes, to prepare one of these sequences we tossed a real coin 40 times.)

In some sense, all 40-bit sequences are equally random
(they all have the same probability 2−40 in a fair coin model),
but some look more random than others.

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 3 / 12

00

01

1101111011100001101101010110001111101010

1100100100001111110110101010001000100001

Can you guess which sequence here is truly random?

(Yes, to prepare one of these sequences we tossed a real coin 40 times.)

In some sense, all 40-bit sequences are equally random
(they all have the same probability 2−40 in a fair coin model),
but some look more random than others.

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 3 / 12

00

01

1101111011100001101101010110001111101010

1100100100001111110110101010001000100001

(btw, the last sequence is a binary expansion of π)

Can you guess which sequence here is truly random?

(Yes, to prepare one of these sequences we tossed a real coin 40 times.)

In some sense, all 40-bit sequences are equally random
(they all have the same probability 2−40 in a fair coin model),
but some look more random than others.

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 3 / 12

00

01

1101111011100001101101010110001111101010

1100100100001111110110101010001000100001

(btw, the last sequence is a binary expansion of π)

Can you guess which sequence here is truly random?
(Yes, to prepare one of these sequences we tossed a real coin 40 times.)

In some sense, all 40-bit sequences are equally random
(they all have the same probability 2−40 in a fair coin model),
but some look more random than others.

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 3 / 12

00

01

1101111011100001101101010110001111101010

1100100100001111110110101010001000100001

(btw, the last sequence is a binary expansion of π)

Can you guess which sequence here is truly random?
(Yes, to prepare one of these sequences we tossed a real coin 40 times.)

In some sense, all 40-bit sequences are equally random
(they all have the same probability 2−40 in a fair coin model)

,
but some look more random than others.

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 3 / 12

00

01

1101111011100001101101010110001111101010

1100100100001111110110101010001000100001

(btw, the last sequence is a binary expansion of π)

Can you guess which sequence here is truly random?
(Yes, to prepare one of these sequences we tossed a real coin 40 times.)

In some sense, all 40-bit sequences are equally random
(they all have the same probability 2−40 in a fair coin model),
but some look more random than others.

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 3 / 12

In some sense, all n-bit sequences are equally random
(they all have the same probability 2−n in a fair coin model).

What is the difference between truly random and non-random sequences?

Possible answer:
random = no regularities
non-random = apparent or hidden regularities = a short description

In practice:
various statistical tests (sequences with no regularities pass these tests)

In theory: the notion of Kolmogorov complexity,
C(x1 . . .xn)= length of the shortest program that prints x1 . . .xn

x1 . . .xn is random means C(x1 . . .xn)≈ n
x1 . . .xn is non-random means C(x1 . . .xn)≪ n

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 4 / 12

In some sense, all n-bit sequences are equally random
(they all have the same probability 2−n in a fair coin model).

What is the difference between truly random and non-random sequences?

Possible answer:
random = no regularities
non-random = apparent or hidden regularities = a short description

In practice:
various statistical tests (sequences with no regularities pass these tests)

In theory: the notion of Kolmogorov complexity,
C(x1 . . .xn)= length of the shortest program that prints x1 . . .xn

x1 . . .xn is random means C(x1 . . .xn)≈ n
x1 . . .xn is non-random means C(x1 . . .xn)≪ n

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 4 / 12

In some sense, all n-bit sequences are equally random
(they all have the same probability 2−n in a fair coin model).

What is the difference between truly random and non-random sequences?

Possible answer:
random = no regularities
non-random = apparent or hidden regularities

= a short description

In practice:
various statistical tests (sequences with no regularities pass these tests)

In theory: the notion of Kolmogorov complexity,
C(x1 . . .xn)= length of the shortest program that prints x1 . . .xn

x1 . . .xn is random means C(x1 . . .xn)≈ n
x1 . . .xn is non-random means C(x1 . . .xn)≪ n

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 4 / 12

In some sense, all n-bit sequences are equally random
(they all have the same probability 2−n in a fair coin model).

What is the difference between truly random and non-random sequences?

Possible answer:
random = no regularities
non-random = apparent or hidden regularities = a short description

In practice:
various statistical tests (sequences with no regularities pass these tests)

In theory: the notion of Kolmogorov complexity,
C(x1 . . .xn)= length of the shortest program that prints x1 . . .xn

x1 . . .xn is random means C(x1 . . .xn)≈ n
x1 . . .xn is non-random means C(x1 . . .xn)≪ n

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 4 / 12

In some sense, all n-bit sequences are equally random
(they all have the same probability 2−n in a fair coin model).

What is the difference between truly random and non-random sequences?

Possible answer:
random = no regularities
non-random = apparent or hidden regularities = a short description

In practice:
various statistical tests (sequences with no regularities pass these tests)

In theory: the notion of Kolmogorov complexity,
C(x1 . . .xn)= length of the shortest program that prints x1 . . .xn

x1 . . .xn is random means C(x1 . . .xn)≈ n
x1 . . .xn is non-random means C(x1 . . .xn)≪ n

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 4 / 12

In some sense, all n-bit sequences are equally random
(they all have the same probability 2−n in a fair coin model).

What is the difference between truly random and non-random sequences?

Possible answer:
random = no regularities
non-random = apparent or hidden regularities = a short description

In practice:
various statistical tests (sequences with no regularities pass these tests)

In theory: the notion of Kolmogorov complexity,
C(x1 . . .xn)= length of the shortest program that prints x1 . . .xn

x1 . . .xn is random means C(x1 . . .xn)≈ n
x1 . . .xn is non-random means C(x1 . . .xn)≪ n

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 4 / 12

In some sense, all n-bit sequences are equally random
(they all have the same probability 2−n in a fair coin model).

What is the difference between truly random and non-random sequences?

Possible answer:
random = no regularities
non-random = apparent or hidden regularities = a short description

In practice:
various statistical tests (sequences with no regularities pass these tests)

In theory: the notion of Kolmogorov complexity,
C(x1 . . .xn)= length of the shortest program that prints x1 . . .xn

x1 . . .xn is random means C(x1 . . .xn)≈ n
x1 . . .xn is non-random means C(x1 . . .xn)≪ n

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 4 / 12

traditional practical usage of randomness

cryptography (random secret keys etc.)

randomized algorithms (Monte-Carlo methods etc.)

random combinatorial structures (e.g., random error correcting codes)

Big practical question: where do we get truly random bits?

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 5 / 12

traditional practical usage of randomness

cryptography (random secret keys etc.)

randomized algorithms (Monte-Carlo methods etc.)

random combinatorial structures (e.g., random error correcting codes)

Big practical question: where do we get truly random bits?

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 5 / 12

traditional practical usage of randomness

cryptography (random secret keys etc.)

randomized algorithms (Monte-Carlo methods etc.)

random combinatorial structures (e.g., random error correcting codes)

Big practical question: where do we get truly random bits?

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 5 / 12

traditional practical usage of randomness

cryptography (random secret keys etc.)

randomized algorithms (Monte-Carlo methods etc.)

random combinatorial structures (e.g., random error correcting codes)

Big practical question: where do we get truly random bits?

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 5 / 12

traditional practical usage of randomness

cryptography (random secret keys etc.)

randomized algorithms (Monte-Carlo methods etc.)

random combinatorial structures (e.g., random error correcting codes)

Big practical question: where do we get truly random bits?

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 5 / 12

Rand Corporation, A Million Random Digits with 100,000 Normal Deviates (1955)

[random digits kindly generated for us in 1955]

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 6 / 12

[random digits from a noise in an electric circuit]

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 7 / 12

[random bits from quantum phenomena]

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 8 / 12

Do these gadgets give perfectly random bits?

Not really. Example:

100 kHz default rate 2.5 MHz 5 MHz

successful whitening: XOR of 3 (apparently biased) data flows looks pretty random

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 9 / 12

Do these gadgets give perfectly random bits? Not really.

Example:

100 kHz default rate 2.5 MHz 5 MHz

successful whitening: XOR of 3 (apparently biased) data flows looks pretty random

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 9 / 12

Do these gadgets give perfectly random bits? Not really. Example:

100 kHz default rate 2.5 MHz 5 MHz

successful whitening: XOR of 3 (apparently biased) data flows looks pretty random

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 9 / 12

Do these gadgets give perfectly random bits? Not really. Example:

100 kHz default rate 2.5 MHz 5 MHz

successful whitening: XOR of 3 (apparently biased) data flows looks pretty random
ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 9 / 12

First practical problem:
Randomly produced bits are usually not truly random

,
they fail standard randomness tests.

Second practical problem:
You cannot trust blindly the standard implementations of randomness tests
(mathematically unsound tests, errors in the code).

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 10 / 12

First practical problem:
Randomly produced bits are usually not truly random,
they fail standard randomness tests.

Second practical problem:
You cannot trust blindly the standard implementations of randomness tests
(mathematically unsound tests, errors in the code).

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 10 / 12

First practical problem:
Randomly produced bits are usually not truly random,
they fail standard randomness tests.

Second practical problem:
You cannot trust blindly the standard implementations of randomness tests

(mathematically unsound tests, errors in the code).

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 10 / 12

First practical problem:
Randomly produced bits are usually not truly random,
they fail standard randomness tests.

Second practical problem:
You cannot trust blindly the standard implementations of randomness tests
(mathematically unsound tests, errors in the code).

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 10 / 12

The challenges:

cleanup/enhance existing randomness tests

experiments with physical random generators

try new approaches to whitening

apply (certainly non-perfect) pseudo-random generators to
produce useful random objects (e.g., error correcting codes)

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 11 / 12

The challenges:

cleanup/enhance existing randomness tests

experiments with physical random generators

try new approaches to whitening

apply (certainly non-perfect) pseudo-random generators to
produce useful random objects (e.g., error correcting codes)

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 11 / 12

The challenges:

cleanup/enhance existing randomness tests

experiments with physical random generators

try new approaches to whitening

apply (certainly non-perfect) pseudo-random generators to
produce useful random objects (e.g., error correcting codes)

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 11 / 12

The challenges:

cleanup/enhance existing randomness tests

experiments with physical random generators

try new approaches to whitening

apply (certainly non-perfect) pseudo-random generators to
produce useful random objects (e.g., error correcting codes)

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 11 / 12

The challenges:

cleanup/enhance existing randomness tests

experiments with physical random generators

try new approaches to whitening

apply (certainly non-perfect) pseudo-random generators to
produce useful random objects (e.g., error correcting codes)

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 11 / 12

Internship proposal:

Generation of random bits is a classical problem known in the context of pseudo-random
generators and also in connection with of truly random physical processes (there exist
electronic devices that produce random bits using an unpredictable physical noise or
intrinsically nondeterministic quantum phenomena). However, the quality of physical
generators of random bits remains badly founded and poorly tested. The first objective
of this project is an experimental study of the validity and quality of several physical
random numbers generators.

When we talk about the quality of random or pseudo-random generators, we have to use
randomness tests. The second objective of the project is an inventory and revision of
statistical tests for random and pseudo-random generators. We suggest to improve the
quality of statistical tests and develop new techniques of “whitening” that improves the
quality of non-ideal sources of random bits. Another axis of the project is a conversion of
various probabilistic proofs into unconventional randomness tests.

Prerequisites: Basic knowledge of probability and statistics, and solid programming skills.
The main tools in the project are pretty standard: C / gcc / Linux. The project requires not
only writing your own code but also reading and maintaining the code that already exists.

ESCAPE / LIRMM Random number generator: testing and whitening invitation to an internship (2020) 12 / 12

