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stacks and queues

crossing nesting

stack = set of non-crossing edges

queue = set of non-nesting edges




stack-number (page-number, book thickness)

sn(G) := minimum number of stacks in a stack layout of G
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sn(G) := minimum number of stacks in a stack layout of G

sn(G) := max{sn(G) : G € G}



queue-number

gn(G) := minimum number of queues in a queue layout of G




queue-number

gn(G) := minimum number of queues in a queue layout of G

an(G) := max{qn(G) : G € G}



some applications

@ computational complexity [Galil, Kannan, Szemerédi '89]
[Bourgain, Yehudayoff '13; Dujmovi¢, Sidiropoulos, Wood]

e RNA folding [Haslinger, Stadler '99]

graph drawing [Baur, Brandes '04; Angelini et al. '12; etc. |

three-dimensional graph drawing
[Dujmovi¢, Morin, Wood '05; Dujmovi¢, Por, Wood '05]

fault-tolerant multiprocessing
[Rosenberg '83; Chung, Leighton, Rosenberg '87]

traffic light control [Kainen '90]
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what is more powerful?

queues would be considered more powerful than stacks if:

@ queue-number is bounded by stack-number

e. VG sn(@)<c = qn(g) <

@ stack-number is not bounded by queue-number

ie. 3G agn(G)<c and sn(g) =

and vice versa

What classes of graphs (if any) separate them?
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examples: trees

example gn(tree) =1




small tool




examples: stack and queue layout of 2-dimensional grid

example gn(grid) < 2




examples: stack and queue layout of 2-dimensional grid

example gn(grid) < 2




1-stack, 1-queue characterization
A graph has a 1-stack layout iff it is
outer-planar.

A graph has a 1-queue layout iff it is
“leveled-planar graph”.

A graph has a 2-stack layout iff it is sub-Hamiltonian.



density, sparsness

Graphs with bounded stack/queue number have O(n) edges.

Thus all graphs with w(n) edges have unbounded bounded
stack/queue number.



density, sparsness

Graphs with bounded stack/queue number have O(n) edges.

Thus all graphs with w(n) edges have unbounded bounded
stack/queue number.

There are O(1)-monotone bipartite
expander

Thus, there are (bounded degree) expanders with O(1) stack/queue
layout.



Used to know much more about stack number

All of the following graphs classes have bounded stack number:

bounded treewidth
planar

genus

proper minor closes
subdivsions



What did we know about queue number?

Pemmaraju '92]: conjectured that there exists planar 3-trees with
unbounded queue-number
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What did we know about queue number?

: conjectured that there exists planar 3-trees with
unbounded queue-number

Disproved by

Graphs of bounded treewidth have bounded queue-number

What about planar graphs



planar graphs

e.g. sn(planar graphs) = 4 [Yannakakis '89 "20]
[Kaufmann, Bekos, Klute, Pupyrev, Raftopoulou, Ueckerdt '20]

open problem |[Heath, Leighton, Rosenberg '92]
do planar graphs have bounded queue-number?



structure of planar graphs

theorem
every planar graph G is a subgraph of HX P
for some graph H with treewidth < 8 and some path P
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structure of planar graphs

theorem
every planar graph G is a subgraph of HX P
for some graph H with treewidth < 8 and some path P

m\ <

N




strong product

For two graphs A and B, the strong product AX B is a graph:
o V(AR B) := V(A) x V(B)
e (a1, b1) and (a2, bp) are adjacent if and only if:
@ a; = ap and b1 b, € E(B);
@ ajap € E(A) and by = by; or
@ ajar € E(A) and b1 b, € E(B)
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The Strong Graph Product X

For two graphs A and B, the AN B is a graph:

> V(AX B) := V(A) x V(B)
» (a1, b1) and (a, by) are adjacent if and only if:

(9] Q
> a1 = a and bib, € E(B); o
> a1ax € E(A) and by = by; or b,
> aja; € E(A) and bib, € E(B).
bﬁl
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The Strong Graph Product X

For two graphs A and B, the AN B is a graph:

> V(AX B) := V(A) x V(B)
» (a1, b1) and (a, by) are adjacent if and only if: &

Q,
> a2, =a and bib, € E(B); o«

> a3 € E(A) and by = by; or by
> aja; € E(A) and bib, € E(B).

m\ <




The Strong Graph Product X

For two graphs A and B, the AN B is a graph:
> V(AR B) .= V(A) x V(B)
» (a1, b1) and (a, by) are adjacent if and only if: ‘1.1/——\‘.%
> a; =a, and b1b, € E(B); b,
> aja; € E(A) and by = by; or
> aia, € E(A) and bib, € E(B). bAC

m\ <




cartesian, direct, strong product

e
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Fig. 4: Examples of graph products: (a) cartesian, (b) direct, (c) strong.



structure of planar graphs

theorem
every planar graph G is a subgraph of HX P
for some graph H with treewidth < 8 and some path P

m\ <

C

what is it good for?




Why?

GCHKXP
> H is a graph of treewidth at most 8
» Many problems are easy for H
» Extending a solution from H to HX P is sometimes easy

> Examples:

» queue number

> nonrepetitive colouring

» p-centered colouring

» (-vertex ranking

P adjacency labelling (universal graphs)

AN E



stack/queue layouts of products
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stack/queue layouts of products
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stack/queue layouts of products
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queue layouts of products
lemma [Wood '04] gn(HX P) < 3qn(H) +1



queue-number of planar graphs

e qn(HX P) < 3qgn(H) +1 [Wood '04]



queue-number of planar graphs

e qn(HX P) < 3qgn(H) +1 [Wood '04]
@ graphs of bounded treewidth have bounded queue-number
[Dujmovi¢, Morin, Wood '05]

o gn(H) < 2(H) — 1 [Wiechert '18|



queue-number of planar graphs

e qn(HX P) <3qgn(H) +1
@ graphs of bounded treewidth have bounded queue-number

o gn(H) < 2(H) — 1

gn(planar G) < gqn(HX P) where tw(H) < 8



generalizations of product structure theorem

Similar product structure theorems for:
G C HIX P, only the treewidth of H changes

@ graphs of bounded genus and apex-minor free graphs
[Dujmovi¢, Joret, Micek, Morin, Ueckerdt, Wood '19]
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Similar product structure theorems for:
G C HIX P, only the treewidth of H changes

@ graphs of bounded genus and apex-minor free graphs
[Dujmovi¢, Joret, Micek, Morin, Ueckerdt, Wood '19]

@ bounded degree graphs that exclude a fixed graph as a minor
[Dujmovi¢, Esperet, Morin, Walczak, Wood '20]



generalizations of product structure theorem

Similar product structure theorems for:
G C HX P, only the treewidth of H changes

@ graphs of bounded genus and apex-minor free graphs

@ bounded degree graphs that exclude a fixed graph as a minor

@ k-planar graphs and (g, k)-planar graphs (non-minor closed
families)



stacks vs queues: which do we know more about?

bounded stack number trees, bounded treewidth, planar, bounded
genus, all proper minor closed, d-monotone bipartite
graphs, 1-planar



stacks vs queues: which do we know more about?

bounded stack number trees, bounded treewidth, planar, bounded
genus, all proper minor closed, d-monotone bipartite
graphs, 1-planar

bounded queue number trees, bounded treewidth, planar, bounded
genus, all proper minor closed, d-monotone bipartite
graphs, k-planar, graph products®, and other non-minor
closed families.
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queues would be considered more powerful than stacks if:

VG sn(G)<c =qn(g) < ¢ and
3G gn(G) <c and sn(G) —

stacks would be considered more powerful than queues if:
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G sn(G)<c and gn(G) —

ubounded stack/queue number
all graphs with w(n) edges, some sparse expanders



what is more powerful?

queues would be considered more powerful than stacks if:

VG sn(G)<c =qn(g) < ¢ and
3G gn(G) <c and sn(G) —

stacks would be considered more powerful than queues if:

VG qn(G)<c = sn(G) < and
G sn(G)<c and gn(G) —

ubounded stack/queue number
all graphs with w(n) edges, some sparse expanders

Only tools for unbounded stack/queue number we had: county and
density
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What is a good candidate for unbounded stack number?
What did we learn?

Strong products are good for queues!

lemma [Wood '04]
an(H; X Hy) < (2qn(Hy) + 1) an(Hx)A(H,) + gn(H;)



What is a good candidate for unbounded stack number?
What did we learn?

Strong products are good for queues!

lemma
qn(Hl X H2)

qn(Hl ] H2)

(2qn(Hy) + 1) gqn(H2)A(H,) + qn(Hy)
qn(Hi1) + A(Hz) an(Hz)

NN



What is a good candidate for unbounded stack number?
What did we learn?

Strong products are good for queues!

lemma
qn(Hl X H2)

qn(Hl ] H2)

(2qn(Hy) + 1) gqn(H2)A(H,) + qn(Hy)
qn(Hi1) + A(Hz) an(Hz)

NN

Are products good for stacks?



layouts of cartesian products

lemma [Wood '04]
for every graph G and graph H with maximum degree A

gn(H: O Hy) < gn(Hy) + gn(Ha) - A(Hz)

lemma [Bernhart, Kainen '79]
for every graph H; and bipartite graph H, with maximum degree A

sn(Hy O Hy) < sn(Hyp) +sn(Hs) - A(H,)
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layouts of cartesian products

lemma
for every graph G and graph H with maximum degree A

gn(H: O Hy) < gn(Hy) + gn(Ha) - A(Hz)

lemma
for every graph H; and bipartite graph H, with maximum degree A

sn(Hy O Hy) < sn(Hyp) +sn(Hs) - A(H,)

to get qn(H; O H,) < ¢ and sn(H; O H,) — oo, choose H; and H,
with:

e gn(H;) and gqn(H,) and A(H,) bounded

@ H, to be ‘far from' bipartite
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hex game

lemma [Nash '49; Pierce '61; Gale '79]
every 2-colouring of H, has a monochromatic path of length n
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hex game

lemma [Nash '49; Pierce '61; Gale '79]
every 2-colouring of H, has a monochromatic path of length n

so take H, = H,, and take H; = star S,



main theorem

theorem
if S, is the n-vertex star and H, is the n x n Hex grid graph, then
an(S,0H,) <4 and sn(S,0H,) — o

_ il
Ml




main theorem

theorem
if S, is the n-vertex star and H, is the n x n Hex grid graph, then
an(S,0H,) <4 and sn(S,0H,) — o0

_ il
Ml

proof pigeon-hole, Erdés-Szekeres lemma, Hex lemma
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theorem [Dujmovi¢, Eppstein, Hickingbotham, Morin, Wood '20]
there exists G with qn(G) < 4 and sn(G) — oo

@ stack-number is not bounded by queue-number
@ stacks are not more powerful than queues
also answers questions about
@ graph subdivisions [Blankenship, Oporwoski '99]

@ twin-width [Bonnet, Geniet, Kim, Thomassé, Watrigant '20]



Bounded degree products and unbounded stack number
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sn(S, X H,) — o0
sn(S, X H,) has unbounded degree.

What about bounded degree products?
H,c PKP

sn(S, X P, X P,) — o0

Can we replace S,, with P,?

an(P, X P, P,) =c
Is sn(P, & P, X P,) — 007



Bounded degree products and unbounded stack number

sn(S, X H,) — o0
sn(S, X H,) has unbounded degree.

What about bounded degree products?

H,Cc PXP
sn(S, X P,X P,) = o0

Can we replace S,, with P,?
an(P, X P, P,) =c
Is sn(P, X P, X P,) — 07




sn(P, X P, X P,) — o0

theorem
[Eppstein, Hickingbotham, Merker, Norin, Seweryn, Wood'22]
sn(P, X P, P,) = ©(n'/3)




sn(P, X P, X P,) — o0

theorem
[Eppstein, Hickingbotham, Merker, Norin, Seweryn, Wood'22]
sn(P, X P, P,) = ©(n'/3)

Main tool: topological overlap theorem of Gromov, 2010.



Sergey's slides

Brambles in grids

Let Grid(n) be a 2-dimensional simplicial complex obtained from the Cartesian
product P,[JP,IP, of three paths, by adding a diagonal to every four cycle and
adding a face corresponding to every triangle.

Lemma
Grid(n) contains a bramble B such that ||B|| > n.




Brambles in grids

Let Grid(n) be a 2-dimensional simplicial complex obtained from the Cartesian
product P,0P,CIP, of three paths, by adding a diagonal to every four cycle, and
adding a face corresponding to every triangle.

Lemma

Grid(n) contains a bramble B such that ||B|| > n.

Corollary

overlap(Grid(n).R?) > n.




Theorem

Let X and Y be 2-dimensional simplicial complexes such that Y is collapsible. Let
f : X — Y be continuous, and let B be a bramble in X. Then

M f(B) #9.

BeB




From overlap to stacks

Lemma (EHMNSW)

Let Ty. ..., Tm be pairwise vertex-disjoint pairwise intersecting triangles in R?
with all the vertices on a circle S. Assume that the edges of Ty

..... Tm can be
partitioned into k non-crossing sets. Then m < k.
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stacks vs queues: which do we know more about?

bounded stack number trees, bounded treewidth, planar, bounded
genus, all proper minor closed, d-monotone bipartite
graphs, 1-planar

bounded queue number trees, bounded treewidth, planar, bounded
genus, all proper minor closed, d-monotone bipartite
graphs, k-planar, graph products®, and other non-minor
closed families.

ubounded stack/queue number all graphs with w(n) edges, some
sparse expanders

ubounded stack number P, X P, X P,
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Open problem

1. do k-planar graphs have bounded stack-number? True for k = 1.

2. does HX P with H of bounded treewidth have bounded
stack-number? If 2. is true, so is 1.

3. is queue-number bounded by stack-number?

YES — queues are more powerful than stacks
NO — neither queues nor stacks are more powerful
What is a good candidate?

Problem: Graphs that we know to have bounded queue number
also have bounded stack number.



