## Stack and Queue Layouts

Vida Dujmović University of Ottawa Ottawa, Canada





# stacks and queues



# stacks and queues



stack = set of non-crossing edges



# stacks and queues



stack = set of non-crossing edges



queue = set of non-nesting edges



# stack-number (page-number, book thickness)

sn(G) := minimum number of stacks in a stack layout of G



# stack-number (page-number, book thickness)

sn(G) := minimum number of stacks in a stack layout of G



 $\operatorname{sn}(\mathcal{G}) := \max\{\operatorname{sn}(\mathcal{G}) : \mathcal{G} \in \mathcal{G}\}$ 

#### queue-number

## qn(G) := minimum number of queues in a queue layout of G



#### queue-number

## qn(G) := minimum number of queues in a queue layout of G



 $qn(\mathcal{G}) := max\{qn(\mathcal{G}) : \mathcal{G} \in \mathcal{G}\}$ 

#### some applications

- computational complexity [Galil, Kannan, Szemerédi '89] [Bourgain, Yehudayoff '13; Dujmović, Sidiropoulos, Wood]
- RNA folding [Haslinger, Stadler '99]
- graph drawing [Baur, Brandes '04; Angelini et al. '12; etc. ]
- three-dimensional graph drawing [Dujmović, Morin, Wood '05; Dujmović, Por, Wood '05]
- fault-tolerant multiprocessing [Rosenberg '83; Chung, Leighton, Rosenberg '87]
- traffic light control

[Kainen '90]

queues would be considered more powerful than stacks if:

- queue-number is bounded by stack-number
- stack-number is not bounded by queue-number

queues would be considered more powerful than stacks if:

• queue-number is bounded by stack-number

i.e. 
$$\forall \mathcal{G} \quad \mathsf{sn}(\mathcal{G}) \leqslant c \implies \mathsf{qn}(\mathcal{G}) \leqslant c'$$

• stack-number is not bounded by queue-number

queues would be considered more powerful than stacks if:

• queue-number is bounded by stack-number

i.e. 
$$orall \mathcal{G} \quad \mathsf{sn}(\mathcal{G}) \leqslant c \implies \mathsf{qn}(\mathcal{G}) \leqslant c'$$

• stack-number is not bounded by queue-number

$$\text{i.e.} \quad \exists \mathcal{G} \quad \mathsf{qn}(\mathcal{G}) \leqslant c \quad \text{and} \quad \mathsf{sn}(\mathcal{G}) \rightarrow \infty \\$$

queues would be considered more powerful than stacks if:

• queue-number is bounded by stack-number

i.e. 
$$orall \mathcal{G} \quad \mathsf{sn}(\mathcal{G}) \leqslant c \implies \mathsf{qn}(\mathcal{G}) \leqslant c'$$

stack-number is not bounded by queue-number
i.e. ∃G qn(G) ≤ c and sn(G) → ∞

and vice versa

queues would be considered more powerful than stacks if:

• queue-number is bounded by stack-number

i.e. 
$$orall \mathcal{G} \quad \mathsf{sn}(\mathcal{G}) \leqslant c \implies \mathsf{qn}(\mathcal{G}) \leqslant c'$$

• stack-number is not bounded by queue-number

$$\text{i.e.} \quad \exists \mathcal{G} \quad \mathsf{qn}(\mathcal{G}) \leqslant c \quad \text{and} \quad \mathsf{sn}(\mathcal{G}) \rightarrow \infty \\$$

and vice versa

[Heath, Leighton, Rosenberg '92]

queues would be considered more powerful than stacks if:

• queue-number is bounded by stack-number

i.e. 
$$orall \mathcal{G} \quad \mathsf{sn}(\mathcal{G}) \leqslant c \implies \mathsf{qn}(\mathcal{G}) \leqslant c'$$

• stack-number is not bounded by queue-number

$$\text{i.e.} \quad \exists \mathcal{G} \quad \mathsf{qn}(\mathcal{G}) \leqslant c \quad \text{and} \quad \mathsf{sn}(\mathcal{G}) \rightarrow \infty$$

and vice versa

What classes of graphs (if any) separate them?

## examples: trees



examples: trees

example qn(tree) = 1



# small tool



examples: stack and queue layout of 2-dimensional grid

example qn(grid)  $\leqslant 2$ 



examples: stack and queue layout of 2-dimensional grid

example qn(grid)  $\leqslant 2$ 



 $\mathsf{example} \,\, \mathsf{qn}(\mathsf{grid}) = 1$ 



# 1-stack, 1-queue characterization

[Bernhart, Kainen '79] A graph has a 1-stack layout iff it is outer-planar.

[Heath, Leighton, Rosenberg '92] A graph has a 1-queue layout iff it is "leveled-planar graph".

A graph has a 2-stack layout iff it is sub-Hamiltonian.

# density, sparsness

Graphs with bounded stack/queue number have O(n) edges.

Thus **all** graphs with w(n) edges have unbounded bounded stack/queue number.

# density, sparsness

Graphs with bounded stack/queue number have O(n) edges.

Thus **all** graphs with w(n) edges have unbounded bounded stack/queue number.

[Bourgain, Yehudayoff '13] There are O(1)-monotone bipartite expander

Thus, there are (bounded degree) expanders with O(1) stack/queue layout.

Used to know much more about stack number

All of the following graphs classes have bounded stack number:

bounded treewidth

planar

genus

proper minor closes

subdivsions

What did we know about queue number?

[Pemmaraju '92]: conjectured that there exists planar 3-trees with unbounded queue-number

What did we know about queue number?

[Pemmaraju '92]: conjectured that there exists planar 3-trees with unbounded queue-number

Disproved by [Dujmović, Morin, Wood '05]:

Graphs of bounded treewidth have bounded queue-number

What did we know about queue number?

[Pemmaraju '92]: conjectured that there exists planar 3-trees with unbounded queue-number

Disproved by [Dujmović, Morin, Wood '05]:

Graphs of bounded treewidth have bounded queue-number

What about planar graphs

#### planar graphs

e.g. sn(planar graphs) = 4 [Yannakakis '89 '20] [Kaufmann, Bekos, Klute, Pupyrev, Raftopoulou, Ueckerdt '20]

open problem [Heath, Leighton, Rosenberg '92] do planar graphs have bounded queue-number?

# structure of planar graphs

theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19] every planar graph G is a subgraph of  $H \boxtimes P$ for some graph H with treewidth  $\leq 8$  and some path P



# structure of planar graphs

theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19] every planar graph G is a subgraph of  $H \boxtimes P$ for some graph H with treewidth  $\leq 8$  and some path P



## strong product

- $V(A \boxtimes B) := V(A) \times V(B)$
- $(a_1, b_1)$  and  $(a_2, b_2)$  are adjacent if and only if:

• 
$$a_1 = a_2$$
 and  $b_1 b_2 \in E(B)$ ;

- $a_1a_2 \in E(A)$  and  $b_1 = b_2$ ; or
- $a_1a_2 \in E(A)$  and  $b_1b_2 \in E(B)$ .









#### cartesian, direct, strong product



Fig. 4: Examples of graph products: (a) cartesian, (b) direct, (c) strong.
## structure of planar graphs

theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19] every planar graph G is a subgraph of  $H \boxtimes P$ for some graph H with treewidth  $\leq 8$  and some path P



what is it good for?

## Why?

 $G \subseteq H \boxtimes P$ 

- H is a graph of treewidth at most 8
- Many problems are easy for H
- Extending a solution from H to  $H \boxtimes P$  is sometimes easy
- Examples:
  - queue number
  - nonrepetitive colouring
  - *p*-centered colouring
  - *l*-vertex ranking
  - adjacency labelling (universal graphs)



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

stack/queue layouts of products





stack/queue layouts of products









stack/queue layouts of products









queue layouts of products

lemma [Wood '04]  $qn(H \boxtimes P) \leq 3qn(H) + 1$ 

queue-number of planar graphs

•  $qn(H \boxtimes P) \leq 3qn(H) + 1$ 

[Wood '04]

## queue-number of planar graphs

• 
$$qn(H \boxtimes P) \leq 3qn(H) + 1$$

• graphs of bounded treewidth have bounded queue-number

[Wood '04]

[Wiechert '18]

[Dujmović, Morin, Wood '05]

• 
$$qn(H) \leqslant 2^{tw(H)} - 1$$

### queue-number of planar graphs

qn(planar G) 
$$\leq$$
 qn( $H \boxtimes P$ ) where tw( $H$ )  $\leq$  8  
 $\leq$  3 qn( $H$ ) + 1  
 $\leq$  3(2<sup>8</sup> - 1) + 1  
= 766

[Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19]

# generalizations of product structure theorem

Similar product structure theorems for:  $G \subseteq H \boxtimes P$ , only the treewidth of H changes

• graphs of bounded genus and apex-minor free graphs [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19]



generalizations of product structure theorem

Similar product structure theorems for:  $G \subseteq H \boxtimes P$ , only the treewidth of H changes

• graphs of bounded genus and apex-minor free graphs [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19]



 bounded degree graphs that exclude a fixed graph as a minor [Dujmović, Esperet, Morin, Walczak, Wood '20] generalizations of product structure theorem

Similar product structure theorems for:  $G \subseteq H \boxtimes P$ , only the treewidth of H changes

• graphs of bounded genus and apex-minor free graphs [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19]



- bounded degree graphs that exclude a fixed graph as a minor [Dujmović, Esperet, Morin, Walczak, Wood '20]
- *k*-planar graphs and (*g*, *k*)-planar graphs (**non-minor closed** families)

[Dujmović, Morin, Wood '20]

stacks vs queues: which do we know more about?

bounded stack number trees, bounded treewidth, planar, bounded genus, all proper minor closed, *d*-monotone bipartite graphs, **1-planar** 

stacks vs queues: which do we know more about?

bounded stack number trees, bounded treewidth, planar, bounded genus, all proper minor closed, *d*-monotone bipartite graphs, **1-planar** 

bounded queue number trees, bounded treewidth, planar, bounded genus, all proper minor closed, *d*-monotone bipartite graphs, **k-planar**, graph products<sup>\*</sup>, and other non-minor closed families.

#### what is more powerful?

queues would be considered more powerful than stacks if:

$$\begin{array}{ll} \forall \mathcal{G} & \mathsf{sn}(\mathcal{G}) \leqslant c & \Longrightarrow \mathsf{qn}(\mathcal{G}) \leqslant c' \text{ and} \\ \exists \mathcal{G} & \mathsf{qn}(\mathcal{G}) \leqslant c & \mathsf{and} & \mathsf{sn}(\mathcal{G}) \to \infty \end{array}$$

stacks would be considered more powerful than queues if:

$$\begin{array}{ll} \forall \mathcal{G} & \mathsf{qn}(\mathcal{G}) \leqslant c & \Longrightarrow \mathsf{sn}(\mathcal{G}) \leqslant c' \text{ and} \\ \exists \mathcal{G} & \mathsf{sn}(\mathcal{G}) \leqslant c & \mathsf{and} & \mathsf{qn}(\mathcal{G}) \to \infty \end{array}$$

#### ubounded stack/queue number all graphs with w(n) edges, some sparse expanders

### what is more powerful?

queues would be considered more powerful than stacks if:

$$\begin{array}{ll} \forall \mathcal{G} & \mathsf{sn}(\mathcal{G}) \leqslant c & \Longrightarrow \mathsf{qn}(\mathcal{G}) \leqslant c' \text{ and} \\ \exists \mathcal{G} & \mathsf{qn}(\mathcal{G}) \leqslant c & \mathsf{and} & \mathsf{sn}(\mathcal{G}) \to \infty \end{array}$$

stacks would be considered more powerful than queues if:

$$\begin{array}{ll} \forall \mathcal{G} & \mathsf{qn}(\mathcal{G}) \leqslant c & \Longrightarrow \mathsf{sn}(\mathcal{G}) \leqslant c' \text{ and} \\ \exists \mathcal{G} & \mathsf{sn}(\mathcal{G}) \leqslant c & \mathsf{and} & \mathsf{qn}(\mathcal{G}) \to \infty \end{array}$$

#### ubounded stack/queue number

all graphs with w(n) edges, some sparse expanders

Only tools for unbounded stack/queue number we had:  $\ensuremath{\textbf{county}}$  and  $\ensuremath{\textbf{density}}$ 

What did we learn?

What did we learn?

Strong products are good for queues!

What did we learn?

Strong products are good for queues!

lemma [Wood '04] qn $(H_1 \boxtimes H_2) \leq (2 \operatorname{qn}(H_1) + 1) \operatorname{qn}(H_2)\Delta(H_2) + \operatorname{qn}(H_1)$ 

What did we learn?

Strong products are good for queues!

 $\begin{array}{l} \text{lemma [Wood '04]} \\ qn(H_1 \boxtimes H_2) \leqslant (2 qn(H_1) + 1) qn(H_2)\Delta(H_2) + qn(H_1) \\ qn(H_1 \square H_2) \leqslant qn(H_1) + \Delta(H_2) qn(H_2) \end{array}$ 

What did we learn?

Strong products are good for queues!

 $\begin{array}{l} \text{lemma [Wood '04]} \\ qn(H_1 \boxtimes H_2) \leqslant (2 qn(H_1) + 1) qn(H_2)\Delta(H_2) + qn(H_1) \\ qn(H_1 \square H_2) \leqslant qn(H_1) + \Delta(H_2) qn(H_2) \end{array}$ 

Are products good for stacks?

layouts of cartesian products

lemma [Wood '04] for every graph G and graph H with maximum degree  $\Delta$  $qn(H_1 \Box H_2) \leq qn(H_1) + qn(H_2) \cdot \Delta(H_2)$ 

#### lemma [Bernhart, Kainen '79]

for every graph  $H_1$  and bipartite graph  $H_2$  with maximum degree  $\Delta$  $\operatorname{sn}(H_1 \Box H_2) \leq \operatorname{sn}(H_1) + \operatorname{sn}(H_2) \cdot \Delta(H_2)$  layouts of cartesian products

lemma [Wood '04] for every graph G and graph H with maximum degree  $\Delta$  $qn(H_1 \Box H_2) \leq qn(H_1) + qn(H_2) \cdot \Delta(H_2)$ 

lemma [Bernhart, Kainen '79] for every graph  $H_1$  and bipartite graph  $H_2$  with maximum degree  $\Delta$  $\operatorname{sn}(H_1 \Box H_2) \leq \operatorname{sn}(H_1) + \operatorname{sn}(H_2) \cdot \Delta(H_2)$ 

to get  $qn(H_1 \Box H_2) \leq c$  and  $sn(H_1 \Box H_2) \rightarrow \infty$ , choose  $H_1$  and  $H_2$  with:

•  $qn(H_1)$  and  $qn(H_2)$  and  $\Delta(H_2)$  bounded

layouts of cartesian products

lemma [Wood '04] for every graph G and graph H with maximum degree  $\Delta$  $qn(H_1 \Box H_2) \leq qn(H_1) + qn(H_2) \cdot \Delta(H_2)$ 

lemma [Bernhart, Kainen '79] for every graph  $H_1$  and bipartite graph  $H_2$  with maximum degree  $\Delta$  $\operatorname{sn}(H_1 \Box H_2) \leq \operatorname{sn}(H_1) + \operatorname{sn}(H_2) \cdot \Delta(H_2)$ 

to get  $qn(H_1 \Box H_2) \leq c$  and  $sn(H_1 \Box H_2) \rightarrow \infty$ , choose  $H_1$  and  $H_2$  with:

- $qn(H_1)$  and  $qn(H_2)$  and  $\Delta(H_2)$  bounded
- H<sub>2</sub> to be 'far from' bipartite









# lemma [Nash '49; Pierce '61; Gale '79]

every 2-colouring of  $H_n$  has a monochromatic path of length n



### lemma [Nash '49; Pierce '61; Gale '79] every 2-colouring of $H_n$ has a monochromatic path of length n

so take  $H_2 = H_n$ 



### lemma [Nash '49; Pierce '61; Gale '79] every 2-colouring of $H_n$ has a monochromatic path of length n

so take  $H_2 = H_n$  and take  $H_1 = \text{star } S_n$ 

#### main theorem

theorem [Dujmović, Eppstein, Hickingbotham, Morin, Wood '20] if  $S_n$  is the *n*-vertex star and  $H_n$  is the  $n \times n$  Hex grid graph, then  $qn(S_n \Box H_n) \leq 4$  and  $sn(S_n \Box H_n) \rightarrow \infty$ 



#### main theorem

theorem [Dujmović, Eppstein, Hickingbotham, Morin, Wood '20] if  $S_n$  is the *n*-vertex star and  $H_n$  is the  $n \times n$  Hex grid graph, then  $qn(S_n \Box H_n) \leq 4$  and  $sn(S_n \Box H_n) \rightarrow \infty$ 



proof pigeon-hole, Erdős-Szekeres lemma, Hex lemma

• stack-number is not bounded by queue-number

- stack-number is not bounded by queue-number
- stacks are not more powerful than queues

- stack-number is not bounded by queue-number
- stacks are not more powerful than queues
- also answers questions about
  - graph subdivisions
    [Blankenship, Oporwoski '99]
  - twin-width [Bonnet, Geniet, Kim, Thomassé, Watrigant '20]

### Bounded degree products and unbounded stack number

 $\operatorname{sn}(S_n \boxtimes H_n) \to \infty$  $\operatorname{sn}(S_n \boxtimes H_n)$  has unbounded degree.
$\operatorname{sn}(S_n \boxtimes H_n) \to \infty$ 

 $sn(S_n \boxtimes H_n)$  has unbounded degree.

What about bounded degree products?

 $\operatorname{sn}(S_n \boxtimes H_n) \to \infty$ 

 $sn(S_n \boxtimes H_n)$  has unbounded degree.

What about bounded degree products?  $H_n \subset P \boxtimes P$  $\operatorname{sn}(S_n \boxtimes P_n \boxtimes P_n) \to \infty$ 

 $\operatorname{sn}(S_n \boxtimes H_n) \to \infty$ 

 $sn(S_n \boxtimes H_n)$  has unbounded degree.

What about bounded degree products?  $H_n \subset P \boxtimes P$  $\operatorname{sn}(S_n \boxtimes P_n \boxtimes P_n) \to \infty$ 

Can we replace  $S_n$  with  $P_n$ ?  $qn(P_n \boxtimes P_n \boxtimes P_n) = c$  $ls sn(P_n \boxtimes P_n \boxtimes P_n) \to \infty$ ?

 $\operatorname{sn}(S_n \boxtimes H_n) \to \infty$ 

 $sn(S_n \boxtimes H_n)$  has unbounded degree.

What about bounded degree products?  $H_n \subset P \boxtimes P$  $\operatorname{sn}(S_n \boxtimes P_n \boxtimes P_n) \to \infty$ 

Can we replace  $S_n$  with  $P_n$ ?  $qn(P_n \boxtimes P_n \boxtimes P_n) = c$  $ls sn(P_n \boxtimes P_n \boxtimes P_n) \to \infty$ ?



 $\operatorname{sn}(P_n \boxtimes P_n \boxtimes P_n) \to \infty$ 

### theorem [Eppstein, Hickingbotham, Merker, Norin, Seweryn, Wood'22] $sn(P_n \boxtimes P_n \boxtimes P_n) = \Theta(n^{1/3})$



 $\operatorname{sn}(P_n \boxtimes P_n \boxtimes P_n) \to \infty$ 

### theorem [Eppstein, Hickingbotham, Merker, Norin, Seweryn, Wood'22] $sn(P_n \boxtimes P_n \boxtimes P_n) = \Theta(n^{1/3})$



Main tool: topological overlap theorem of Gromov, 2010.

# Sergey's slides

# Brambles in grids

Let Grid(n) be a 2-dimensional simplicial complex obtained from the Cartesian product  $P_n \Box P_n \Box P_n$  of three paths, by adding a diagonal to every four cycle and adding a face corresponding to every triangle.

### Lemma

Grid(n) contains a bramble  $\mathcal{B}$  such that  $\|\mathcal{B}\| \ge n$ .



## Brambles in grids

Let Grid(n) be a 2-dimensional simplicial complex obtained from the Cartesian product  $P_n \Box P_n \Box P_n$  of three paths, by adding a diagonal to every four cycle, and adding a face corresponding to every triangle.

### Lemma

Grid(n) contains a bramble  $\mathcal{B}$  such that  $\|\mathcal{B}\| \ge n$ .

### Corollary

 $\operatorname{overlap}(\operatorname{Grid}(n), \mathbb{R}^2) \ge n.$ 

### Theorem

Let X and Y be 2-dimensional simplicial complexes such that Y is collapsible. Let  $f : X \to Y$  be continuous, and let  $\mathcal{B}$  be a bramble in X. Then

 $\bigcap_{B\in\mathcal{B}}f(B)\neq\emptyset.$ 

### Lemma (EHMNSW)



### Lemma (EHMNSW)



### Lemma (EHMNSW)



### Lemma (EHMNSW)



stacks vs queues: which do we know more about?

bounded stack number trees, bounded treewidth, planar, bounded genus, all proper minor closed, *d*-monotone bipartite graphs, **1-planar** 

stacks vs queues: which do we know more about?

bounded stack number trees, bounded treewidth, planar, bounded genus, all proper minor closed, *d*-monotone bipartite graphs, **1-planar** 

bounded queue number trees, bounded treewidth, planar, bounded genus, all proper minor closed, *d*-monotone bipartite graphs, **k-planar**, graph products<sup>\*</sup>, and other non-minor closed families.

ubounded stack/queue number all graphs with w(n) edges, some sparse expanders

ubounded stack number  $P_n \boxtimes P_n \boxtimes P_n$ 

1. do *k*-planar graphs have bounded stack-number? True for k = 1.

 does H ⊠ P with H of bounded treewidth have bounded stack-number? If 2. is true, so is 1.

- 1. do k-planar graphs have bounded stack-number? True for k = 1.
- 2. does  $H \boxtimes P$  with H of bounded **treewidth** have bounded stack-number? If 2. is true, so is 1.
- 3. is queue-number bounded by stack-number?

- 1. do k-planar graphs have bounded stack-number? True for k = 1.
- does H ⊠ P with H of bounded treewidth have bounded stack-number? If 2. is true, so is 1.
- 3. is queue-number bounded by stack-number?
  - $\mathsf{YES} \longrightarrow \mathsf{queues}$  are more powerful than stacks
  - $\mathsf{NO} \longrightarrow \mathsf{neither}$  queues nor stacks are more powerful

- 1. do k-planar graphs have bounded stack-number? True for k = 1.
- does H ⊠ P with H of bounded treewidth have bounded stack-number? If 2. is true, so is 1.
- 3. is queue-number bounded by stack-number?
  - $\mathsf{YES} \longrightarrow \mathsf{queues}$  are more powerful than stacks
  - $\mathsf{NO} \longrightarrow \mathsf{neither}$  queues nor stacks are more powerful
  - What is a good candidate?

- 1. do k-planar graphs have bounded stack-number? True for k = 1.
- does H ⊠ P with H of bounded treewidth have bounded stack-number? If 2. is true, so is 1.
- 3. is queue-number bounded by stack-number?
  - $\mathsf{YES} \longrightarrow \mathsf{queues}$  are more powerful than stacks
  - $\mathsf{NO} \longrightarrow \mathsf{neither}$  queues nor stacks are more powerful

What is a good candidate? Problem: Graphs that we know to have bounded queue number also have bounded stack number.